期刊文献+

基于卡尔曼滤波的迟滞神经网络风速序列预测 被引量:5

Wind speed forecasting by a hysteretic neural network based on Kalman filtering
原文传递
导出
摘要 通过将迟滞特性引入神经元激励函数的方式,构造了一种前向型迟滞神经网络模型.结合卡尔曼滤波方法,将其应用于风速时间序列的预测分析中.在原始风速时间序列的基础上,构造出风速变化率序列.采用迟滞神经网络分别对两种序列进行预测分析,并将预测结果利用卡尔曼滤波方法进行融合,从而得到最优预测估计结果.仿真实验结果表明,迟滞神经网络具有更加灵活的网络结构,能够有效改善网络的泛化能力,预测性能优于传统神经网络.采用卡尔曼滤波方法对预测结果进行融合后能够进一步提高预测精度,降低预测误差. The hysteretic characteristic was introduced into the activation functions of neurons,and a forward hysteretic neural network was proposed. In combination with the Kalman filter algorithm,the hysteretic neural network was applied to wind speed forecasting. A change rate series of wind speed was constructed according to the original wind speed time series. Forecasting analysis of both the series was performed with the hysteretic neural network,these prediction results were fused using the Kalman filter algorithm,and thus the optimal estimated results were obtained. Simulation results show that the hysteretic neural network has more flexible structure,better generalization ability,and better prediction performance than the conventional neural network. The prediction performance can be further improved by Kalman filter fusion.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2014年第8期1108-1114,共7页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(61203302)
关键词 风力发电 风速 预测 神经网络 迟滞 卡尔曼滤波 wind energy power generation wind speed forecasting neural networks hysteresis Kalman filtering
  • 相关文献

参考文献15

二级参考文献158

共引文献579

同被引文献67

  • 1丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 2霍玉华.隧道围岩变形量预测的灰色模型应用比较研究[J].北京交通大学学报,2006,30(4):42-45. 被引量:33
  • 3王利,李亚红,刘万林.卡尔曼滤波在大坝动态变形监测数据处理中的应用[J].西安科技大学学报,2006,26(3):353-357. 被引量:50
  • 4Gang H B,Daniel M,Kammena B C.Where,when and how much wind is available A provincial-scale wind res- ource assessment for China[J].Energy Policy, 2014,74:116- 122.
  • 5Gwo-Ching Liao.Hybrid Improved Differential Evolution and Wavelet Neural Network with load foreeasting problem of air eonditioning[J].International Journal of Electrical Power and Energy Systems,2014,61:673-682.
  • 6Wan Y.Summary report of wind farm data[R].Golden:Nat- ional Renewable Energy Laboratory,2008:67.
  • 7Kusiak A,Zhang Z J.Short-horizen prediction of wind po- wer:a data-driven approach[J].IEEE Transaction on Energy Conversion, 2010,25(4):1112-1122.
  • 8S M Weekes,A S Tomlin.Data efficient measure-correlate- predict approaches to wind resource assessment for small- scale wind energy[J].Renewable Energy,2014:648-650.
  • 9Salcedo-Sanz S,Ortiz-Garcia E G,et al.Short term wind speed prediction based on evolutionary support vector re- gression algorithms [J].Expert Systems with Applications,2011,38(4):4052-4057.
  • 10李闯,申烛,孟凯锋,等.基于偏度指标的风机功率曲线拟合数据滤波方法[C]//中国电机工程学会.2013年中国电机工程学会年会论文集,2013:5.

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部