期刊文献+

直接优化性能指标的多排序模型融合方法 被引量:3

Multiple Rank Aggregation Based on Directly Optimizing Performance Measure
下载PDF
导出
摘要 现有排序学习算法忽视了查询之间的差异,在建立排序模型的过程中等同对待训练样本集中的所有查询及其相关文档,影响了排序模型的性能.文中描述了查询之间的差异,并在训练过程中考虑查询之间的差异,提出了一种基于有监督学习的多排序模型融合方法.这种方法首先使用每一个查询及其相关文档训练出子排序模型,并将每一个子排序模型的输出转化为体现查询差异的特征数据,使用监督学习方法,实现了多排序模型的融合.更进一步,针对排序问题的特性,文中提出了一种直接优化排序性能的融合函数融合子排序模型,使用梯度上升方法优化其下界函数.文中证明了直接优化排序性能的融合函数融合子排序模型的性能优于子排序模型线性合并的性能.基于较大规模真实数据应用的实验结果表明,直接优化性能指标的多排序模型融合方法可以比传统排序学习模型具有更好的排序性能. In ranking for document retrieval,queries often vary greatly from one to another.Most of the existing approaches treat the losses from different queries as the same.We find out that using a supervised rank aggregation function could further improve the ranking performance.In this paper,the differences among queries are taken into consideration,and a supervised rank aggregation framework based on query similarity is proposed.This approach sets up a number of base rankers based on each query and its relevant documents,and then employs a supervised aggregation function to train the weights for these base rankers.We propose an aggregation function which is directly optimizing performance measure NDCG,referred to as RankAgg.NDCG.We prove that RankAgg.NDCG can achieve better performance than the linear combination of the base rankers.Experimental results performed on real world datasets show our approach outperforms conventional ranking approaches.
出处 《计算机学报》 EI CSCD 北大核心 2014年第8期1658-1668,共11页 Chinese Journal of Computers
基金 国家自然科学基金(60673009 61105049) 国家"八六三"高技术研究发展计划项目基金(2011AA05A117) 高等学校博士学科点专项科研基金博士生导师类项目(65010571) 天津市电力公司科技项目(KJ14-1-10)资助~~
关键词 排序模型融合 直接优化性能指标 排序学习 信息检索 rank aggregation directly optimizing performance measure learning to rank information retrieval
  • 相关文献

参考文献2

二级参考文献56

  • 1丁国栋,白硕,王斌.文本检索的统计语言建模方法综述[J].计算机研究与发展,2006,43(5):769-776. 被引量:19
  • 2Burges C, Shaked T, Renshaw E, et al. I.earning to rank using gradient descent [C] //Proc of ACM ICML2005. New York: ACM, 2005:89-96.
  • 3Cao Z, Qin T, Liu T, et al. Learning to rank: From pairwise approach to listwise approach [C] //Proe of ACM ICML2007. New York: ACM, 2007.
  • 4Qin T, Zhang X, Tsai M, et al. Query level loss functions for information retrieval [J]. Journal of Information Processing and Management, 2008, 44(2): 838-855.
  • 5Xia F, Liu T, Wang J, et al. Listwise approach to learning to rank--theory and algorithm [C] //Proc of ACM ICML2008. New York: ACM, 2008:1192-1199.
  • 6Xu J, Li H. AdaRank: A boosting algorithm for information retrieval [C] //Proc of ACM SIGIR2007. New York: ACM, 2007:391-398.
  • 7Geng X, Liu T, Qin T, using K nearest neighbor New York: ACM, 2008: et al. Query dependent ranking [C]//Proe of ACM SIGIR2008. 115-122.
  • 8Platt J. Fast Training of Support Vector Machines Using Sequential "Minimal Optimization [M]. Cambridge, MA: MIT Press, 1998.
  • 9Liu T, Xu J, Qin T, et al. LETOR: Benchmark dataset for research on learning to rank for information retrieval [C] // Proc of ACM SIGIR2007. New York:ACM, 2007: 3-10.
  • 10Hersh W, Buekley C, Leone T, et al. OHSUMED.. An interactive retrieval evaluation and new large test collection for research [C] //Proc of ACM SIGIR1994. New York:ACM, 1994:192-201.

共引文献6

同被引文献20

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部