期刊文献+

一类具有治疗SIRS传染病模型的后向分支 被引量:1

A Class of Backward Bifurcation for SIRS Epidemic Model Treatment
下载PDF
导出
摘要 研究了一类SIRS传染病模型,确定了模型的基本再生数R0。R0>1时,无病平衡点不稳定,地方病平衡点是稳定的。当R0<1时,系统会产生后向分支,并得到后向分支产生的条件。 This paper studies a class of SIRS epidemic model and determines the basic reproduction number R0 for the model. When R0〉1, the disease free equilibrium is unstable while the endemic equilibrium is stable. When R0〈1, a backward bifurcation occurs, and conditions for the system to produce backward bifurcation can be obtained.
作者 闫玲
出处 《洛阳理工学院学报(自然科学版)》 2014年第2期80-83,共4页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
关键词 SIRS传染病模型 后向分支 治疗 平衡点 SIRS epidemic model backward bifurcation treatment equilibrium point
  • 相关文献

参考文献2

二级参考文献19

  • 1Z Ma,Y Zhou,W Wang,et al,Mathematical Mod eling and Research of Epidemic Dynamical Systems [J]. Science Press, Beijing, 2004.
  • 2H W Hethcote.The mathematics of infectious dis- eases[J ].SIAM Rev, 2000(42) : 599 -653.
  • 3K Hadeler, P van den Driessche, Backward bifurca tion in epidemic control[Jl.Math Biosci, 1997, 146: 15-35.
  • 4W Wang.Backward bifurcation of an epidemic mod- el with treatment[J].Math Biosci, 2006,201: 58-71.
  • 5W Wang, S Ruan.Bifurcation in an epidemic model with constant removal rate of the infectives [J].Math Anal Appl, 2004,291: 775-793.
  • 6Z X Liu, S Liu, H Wang.Backward bifurcation of an epidemicmodelwith standard incidence rate and treatment rate [J].Nonlinear Anal RWA, 2008, 348: 433-443.
  • 7X Zhang, X N I.iu.Backward bifurcation and global dynamics of an SIS epidemic model with general incidence rate and treatment [J].Nonlinear Anal RWA, 2009,10: 565-575.
  • 8X Zhang, X N Liu.Backward bifurcation of an epi- demic model with saturated treatment function [J]. Math Anal Appl, 2008,348 : 433-443.
  • 9S Gao,Y Liu,J J Nieto,H Andrade.Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission[J].Math Comput Simula- tion, 2011,84:1855-1868.
  • 10C Sun, W Yang.Global results for an SIRS model with vaccination and isolation[J].Nonlinear Anal. RWA, 2010,11:4223- 4237.

共引文献3

同被引文献11

  • 1肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2012.
  • 2GELENBE E, GELLMAN M, LOUKAS G. Defending networks against denial-of-service attacks[ C ]. International Society for Optics and Photonics European Symposium on Optics and Photonics for Defence and Security. SPIE, 2004:233 -243.
  • 3XING F, WANG W. Understanding dynamic denial of service attacks in mobile ad hoc networks[ C]. IEEE Military Communications Conference. MILCOM 2006. Washington, DC : IEEE, 2006 : 1 - 7.
  • 4HALDAR K, MISHRA B K. A mathematical model for a distributed attack on targeted resources in a computer network [ J ]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9) : 3149 -3160.
  • 5内藤敏机,原惟行,日野义之,等.时滞微分方程:泛函微分方程引论[M].北京:科学出版社,2013.
  • 6LI M Y, MULDOWNEY J S. A geometric approach to global-stability problems [ J ]. SIAM Journal on Mathematical Analysis, 1996, 27 (4) : 1070 - 1083.
  • 7LI M Y, GRAEF J R, WANG L C, et al. Global dynamics of an SEIR model with varying total population size[ J]. Mathematical Bioseienee, 1999, 160:191-213.
  • 8BUTLER G, WALTbtAN P. Persistence in dynamical systems [ J ]. Journal of Differential Equations, 1986, 63 (2) : 255 -263.
  • 9XU R, MA Z, WANG Z. Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity[J]. Computers & Mathematics with Applications, 2010, 59 (9) : 3211 - 3221.
  • 10DUAN X C, YUAN S L, LI X Z, et al. Global stability of an SVIR model with age of vaccination [ J ]. Applied Mathematics and Computation, 2014, 226(1) : 528 -540.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部