期刊文献+

灰葡萄孢犬尿氨酸单氧酶基因BcKMO调控病菌致病力的机制分析 被引量:5

Mechanism Analysis of Kynurenine 3-monooxygenase Gene BcKMO in Regulation of Pathogenicity in Botrytis cinerea
下载PDF
导出
摘要 【目的】揭示灰葡萄孢犬尿氨酸单氧酶基因BcKMO(kynurenine 3-monooxygenase)调控病菌致病力的机制,阐明灰葡萄孢致病的分子机理。【方法】利用DNS和Hoffman方法,对BcKMO的T-DNA插入突变体BCG183和回复突变体(BCG183/BcKMO)的多聚半乳糖醛酸酶(PMG)、果胶酶(PG)、纤维素酶(Cx)、多聚半乳糖醛酸反式消除酶(PGTE)和果胶甲基反式消除酶(PMTE)的活性进行分析;提取灰葡萄孢野生型和BCG183、BCG183/BcKMO突变体的粗毒素并进行生物活性测定;利用溴百里酚蓝显色试验,对突变体BCG183和BCG183/BcKMO的产酸能力进行分析;利用洋葱表皮穿透试验,检测突变体BCG183和BCG183/BcKMO的穿透能力;利用real-time PCR技术,检测突变体BCG183和BCG183/BcKMO中已知致病相关基因腺苷酸环化酶编码基因Bac、异源三聚体G-蛋白G?亚基基因Bcg2和Bcg3、蛋白激酶调节亚基基因PkaR、MAP激酶编码基因Bmp1和Sak1、MAP激酶Bmp3和BcSak1下游的靶基因Bcreg1、TCHK-MAPK信号途径基因Bos1、亲环蛋白A编码基因Bcp1、小G蛋白基因Ras2、多聚半乳糖醛酸酶基因Bcpg1和超氧化物歧化酶基因Sod1的表达水平。【结果】突变体BCG183中的PMG和PG的酶活性较野生型和回复突变体明显增强,CX、PGTE和PMTE的酶活性与野生型和回复突变体没有明显差别;突变体BCG183的毒素活性较野生型和回复突变体明显增强;突变体BCG183的产酸能力较野生型和回复突变体明显减弱;突变体BCG183能够穿透洋葱表皮,在培养基上形成菌落,与野生型和回复突变体没有明显差别;突变体BCG183中已知致病相关基因Bac、Bcg2、Bcg3、PkaR、Bmp1、Sak1、Bcreg1、Bos1、Bcp1、Ras2、Bcpg1和Sod1的表达水平明显强于野生型和回复突变体。【结论】灰葡萄孢BcKMO通过调控病菌的胞壁降解酶活性、毒素活性、产酸能力、致病相关基因的表达而影响病菌的致病力。 【Objective】The objective of this study is to reveal the molecular mechanism of kynurenine 3-monooxygenase gene BcKMO in regulating pathogenicity of Botrytis cinerea and lay a foundation for clarifing the pathogenic mechanism of B. cinerea in the future.【Method】The activities of polymethylgalacturonase(PMG), endopolygalacturonase(PG), cellulase(CX), polygalacturonic acid transeliminase(PGTE) and pectin methyl transelimination enzyme(PMTE) were analyzed in the wild-type strain(WT), the BcKMO gene ATMT mutant(BCG183) and gene complement mutant(BCG183/BcKMO) by DNS and Hoffman methods. The toxin was isolated from WT, BCG183 and BCG183/BcKMO and the activity of toxin was analyzed. Acid production assays was performed on PDA medium with bromothymol blue. Penetrability of WT, BCG183 and BCG183/BcKMO was detected with onion epidermis spread on PDA medium. Real-time PCR was used to measure the transcription levels of pathogenicity-related genes, e.g., Bac, Bcg2, Bcg3, PkaR, Bmp1, Sak1, Bcreg1, Bos1, Bcp1, Ras2, Bcpg1, and Sod1 in WT, BCG183 and BCG183/BcKMO.【Result】The activity of PMG and PG in mutant BCG183 were significantly higher than that of WT and BCG183/BcKMO. The CX, PGTE and PMTE activities were no significant difference while compared with WT and BCG183/BcKMO. The toxin activity of mutant BCG183 was significantly higher than that of WT and BCG183/BcKMO. The acid production of the mutant BCG183 significantly decreased. The penetrability of mutant BCG183 appeared no significant difference compared to WT and BCG183/BcKMO. The expression level of pathogenicity-related genes, i.e., Bac, Bcg2, Bcg3, PkaR, Bmp1, Sak1, Bcreg1, Bos1, Bcp1, Ras2, Bcpg1, and Sod1, was obviously up-regulated in mutant BCG183.【Conclusion】The BcKMO gene is involved in regulating cell wall degradation enzyme activity, toxin activity, acid production, penetrability, and the expression of pathogenicity- related genes in B. cinerea.
出处 《中国农业科学》 CAS CSCD 北大核心 2014年第16期3167-3173,共7页 Scientia Agricultura Sinica
基金 河北省科技支撑计划(12226507)
关键词 灰葡萄孢 BcKMO 突变体 致病力 Botrytis cinerea BcKMO mutants pathogenicity
  • 相关文献

参考文献2

二级参考文献36

  • 1高俊明,李新凤,马丽娜,李欣,王建明.番茄内生放线菌ts-6及其次生代谢产物对番茄灰霉病的防病效果[J].山西农业科学,2007,35(10):31-33. 被引量:6
  • 2FAN Yong-shan,GU Shou-qin,DONG Jin-gao,DONG Bing-fang.Effects of MEK-Specific Inhibitor U0126 on the Conidial Germination,Appressorium Production,and Pathogenicity of Setosphaeria turcica[J].Agricultural Sciences in China,2007,6(1):78-85. 被引量:4
  • 3解红娥,王娇娟,解晓红,李江辉,陈丽,武宗信.地黄土壤中主要病原真菌的鉴定及致病性研究[J].山西农业科学,2007,35(2):59-63. 被引量:9
  • 4Kauffman HF, van der Heide S, de Vries K. Botrytis cinerea: a study of the immunological properties during growth. Incidence of antibodies against B. cinerea in a group of patients with aspergillosis[J]. International Archives of Allergy and Applergy Immunology, 1987, 83(4): 359-365.
  • 5Giraud T, Fortini D, Levis C, et al. RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species[J]. Molecular Biology and Evolution, 1997, 14(11): 1177-1185.
  • 6Levis C, Giraud T, Dutertre M, et al. Telomeric DNA of Botrytis cinerea: a useful tool for strain identification[J]. FEMS Microbiology Letters, 1997,157(2): 267-272.
  • 7Williamson B, Tudzynski B, Tudzynski P, et al. Botrytis cinerea: the cause of grey mould disease[J]. Molecular Plant Pathology, 2007, 8(5): 561-580.
  • 8Van Kan JAL. Licensed to kill: the lifestyle of a necrotrophic plant pathogen[J]. Trends in Plant Sciences, 2006, 11(5): 247-253.
  • 9Choquer M, Fournier E, Kunz C, et al. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen[J]. FEMS Microbiology Letters, 2007, 277(1): 1-10.
  • 10Stahmann KP, Pielken P, Schimz KL, et al. Degradation of extracellular β-(1,3) (1,6)-d-glucan by Botrytis cinerea[J]. Applied and Environmental Microbiology, 1992, 58(10): 3347-3354.

共引文献10

同被引文献11

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部