期刊文献+

基于软骨和韧带的全腕关节有限元模型建立和舟状骨生物力学研究 被引量:8

Scaphoid biomechanical study based on finite element analysis of human wrist joint including cartilage and ligament
下载PDF
导出
摘要 目的通过基于CT扫描数据包含韧带和软骨的腕关节有限元模型构建、受力分析,在传统仅以骨为研究和建模对象的有限元领域做出突破,以期为后期开展全结构、多组织生物力学有限元分析的研究提供参考。方法应用Mimics、Geomagic Studio、Abaqus等软件,采用快速个体化建模方法对1名29岁成年健康男性志愿者的右侧尺桡骨远端至近端指骨的CT扫描数据进行快速建立模型,施加沿中指轴线的静力载荷和约束,观察米塞斯应力的分布情况、最大值及其所处部位。结果在100、300N压力下,最大应力分别为1.059×108和3.178×108 Pa,在不同应力载荷下,腕关节的最大应力值和最小应力值部位均相同。不同荷载状态下应力云图显示,舟状骨最大应力值出现在腰部区域,可明确解释临床工作中舟状骨骨折多见于腰部,并且有效验证了本模型的真实性和有效性。结论采用个体化建模方法可对腕关节整体结构模型进行运算分析,在模拟韧带结构和软骨结构的分析中,可采用简化的梁结构和相互作用对实现。 Objective To construct a finite element model of wrist ligaments and cartilage containing the image data based on CT construction and stress analysis, soas to make a breakthrough in the study on bone finite element modeling and to further study the whole structure and multi-organizational biomechanical finite element analysis. Methods Mimics, Geomagic Studio and Abaqus softwares were used for rapid individualized modeling in a 29-year-old adult healthy male volunteers. CT scan was performed from the right radius and ulna distal to the proximal phalanx when the middle finger static axial loads and constraints were given. Chamisesi stress distribution, maximum stress and the location where the maximum affected were observed. Results The maximum stress were 1. 059 × 108 Pa and 3. 178 × 108 Pa under 100 N and 300 N pressure, respectively. Under different stress loads, both maximum stress and minimum stress were located at the same parts of the wrist. Under different loading conditions, stress cloud showed scaphoid maximum stress appeared at waist area, which could clearly explain why scaiphoid fracture is more common in the waist in clinic, and effectively verify the authenticity and validity of the model. Conclusion The operation analysis of overall structure of the wrist joint can be achieved by individualized modeling. The analysis of simulation ligaments and cartilage structure can be used to simplify the interaction of the beam structure. (Shanghai Med J, 2014, 37: 602-605)
出处 《上海医学》 CAS CSCD 北大核心 2014年第7期602-605,I0003,共5页 Shanghai Medical Journal
关键词 有限元分析 生物力学 全腕关节 韧带 软骨 Finite element analysis Biomechanics Human wrist joint Ligament Cartilage
  • 相关文献

参考文献16

  • 1王澍寰.手外科学[M]2版[M].北京:人民卫生出版社,2000.446-450.
  • 2吴志鹏,高伟阳,吴立军.腕关节生物力学有限元分析研究进展[J].国际骨科学杂志,2008,29(5):307-309. 被引量:6
  • 3TAYLOR W R, ROLAND E, PLOEG H, et al. Determination of orthotropic bone elastic constants using FEA and modal analysis[J]. J Biomech, 2002, a5(6): 767-773.
  • 4BLEMKER S S, ASAKAWA D S, GOLD G E, et al. Image-based musculoskeletal modeling: applications, advances, and future opportunities [J]. J Magn Reson Imaging, 2007, 25(2): 441-451.
  • 5CIMERMAN M, KRISTAN A. Preoperative planning in pelvic and acetabular surgery: the value of advanced computerised planning modules[J]. Injury, 2007, 38 (4): 442-449.
  • 6EL'SHEIKH H F, MACDONALD B J, HASHMI M S J. Finite element simulation of the hip joint during stumbling: A eomparision between static and dynamic loading[-J]. J Mat Proc Technol, 2003, 143/144(1) : 249-255.
  • 7姜海波,葛世荣.基于CT扫描人体股骨的有限元分析[J].工程力学,2007,24(10):156-159. 被引量:26
  • 8LENGSFELD M, SCHMITT J, ALTER P, et al. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation[J]. Med Eng Phys, 1998, 20(7): 515-522.
  • 9张国栋,廖维靖,陶圣祥,毛文玉,陈建桥,郑晓晖,张发惠.股骨有限元分析赋材料属性的方法[J].中国组织工程研究与临床康复,2009,13(43):8436-8441. 被引量:49
  • 10BURKHART T A, ANDREWS D M, DUNNING C E. Finite element modeling mesh quality, energy balance and validation methods: a review with recommendations associated with the modeling of bone tissue[J]. J Biomech, 2013, 46(9): 1477-1488.

二级参考文献109

共引文献123

同被引文献88

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部