期刊文献+

The cloud-microphysical cause of torrential rainfall amplification associated with Bilis(0604) 被引量:17

The cloud-microphysical cause of torrential rainfall amplification associated with Bilis(0604)
原文传递
导出
摘要 After its landfall in China's mainland in 2006, Typhoon Bilis brought about torrential rainfall amplification at the edge of Guangdong, Jiangxi, and Hunan provinces, causing severe disasters. From a cloud-microphysical perspective, we discuss the differences of cloud-microphysical processes before and during the precipitation amplification and possible causes of the rain- fall amplification by using high-resolution simulation data. The results show that the cloud-microphysical characteristics dur- ing the above two periods are significantly different. With the distinct increase in the rainfall intensity, the cloud hydrometeor contents increase markedly, especially those of the ice-phase hydrometeors including ice, snow and graupel, contributing more to the surface rainfall. The clouds develop highly and vigorously. Comparisons of conversion rates of the cloud hydrometeors between the above two periods show that the distinct increases in the cloud water content caused by the distinct enhancement of the water vapor condensation rate contribute to the surface rainfall mainly in two ways. First, the rain water content increas- es significantly by accretion of cloud water by rain water, which thus contributes to the surface rainfall. Second, the accretion of cloud water by snow increases significantly the content of snow, which is then converted to graupel by accretion of snow by graupel. And then the graupel melts into rain water, which subsequently contributes to the surface rainfall amplification. In summary, a flow chart is given to clarify the cloud-micropbysical cause of the torrential rainfall amplification associated with Bills. After its landfall in China's mainland in 2006, Typhoon Bilis brought about torrential rainfall amplification at the edge of Guangdong, Jiangxi, and Hunan provinces, causing severe disasters. From a cloud-microphysical perspective, we discuss the differences of cloud-microphysical processes before and during the precipitation amplification and possible causes of the rainfall amplification by using high-resolution simulation data. The results show that the cloud-microphysical characteristics during the above two periods are significantly different. With the distinct increase in the rainfall intensity, the cloud hydrometeor contents increase markedly, especially those of the ice-phase hydrometeors including ice, snow and graupel, contributing more to the surface rainfall. The clouds develop highly and vigorously. Comparisons of conversion rates of the cloud hydrometeors between the above two periods show that the distinct increases in the cloud water content caused by the distinct enhancement of the water vapor condensation rate contribute to the surface rainfall mainly in two ways. First, the rain water content increases significantly by accretion of cloud water by rain water, which thus contributes to the surface rainfall. Second, the accretion of cloud water by snow increases significantly the content of snow, which is then converted to graupel by accretion of snow by graupel. And then the graupel melts into rain water, which subsequently contributes to the surface rainfall amplification. In summary, a flow chart is given to clarify the cloud-microphysical cause of the torrential rainfall amplification associated with Bilis.
出处 《Science China Earth Sciences》 SCIE EI CAS 2014年第9期2100-2111,共12页 中国科学(地球科学英文版)
基金 supported by the National Basic Research Program of China (Grant No. 2009CB421505) the National Natural Science Foundation of China (Grant No. 41175056) Shanghai Typhoon Research Foundation (Grant No. 2013ST01) the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)
关键词 landfalling typhoon torrential rainfall amplification cloud microphysics 云微物理过程 放大过程 原因 暴雨 降水量 中国大陆 模拟数据 高分辨率
  • 相关文献

参考文献21

二级参考文献301

共引文献1048

同被引文献419

引证文献17

二级引证文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部