期刊文献+

多壁碳纳米管与氧化石墨对活性炭电化学性能影响

Influences of multi-walled carbon nanotubes and graphite oxide on electrochemical performances of activated carbon
下载PDF
导出
摘要 以石油焦制得活性炭(AC)作为超级电容器的电极材料,在此AC中分别加入5%多壁碳纳米管(MWCNTs)或5%氧化石墨(GO),借助氮吸附分析仪、循环伏安测试(CV)和电化学交流阻抗谱分析(EIS),比较MWCNTs与GO对改进AC电化学性能作用影响。实验结果显示:MWCNTs和GO的吸附等温线具有多段特征,而AC呈现含丰富中孔的微孔炭特征。CV测试显示,在低扫描速率下,加入MWCNTs和GO可使响应电流略有增加。EIS揭示加入MWCNTs和GO可提高AC电极的导电性、频率响应和快速充放电性能,同时提高AC电极的的充放电容量。倍率放电性能和1000次循环测试也表明加入MWCNTs和GO可提高AC电极的放电容量。 Activated carbon is prepared from petrol coke as the electrode material of electric double-layer ca- pacitors (ECs). Multi-walled carbon nanotubes (MWCNTs) and graphite oxide (GO) are used to mix with ac- tivated carbon as electrode material of ECs, where the amounts of MWCNTs and GO inside AC electrodes are all the weight percentage of 5%. The nitrogen adsorption analysis, the cyclic voltammogram (CV) and elec- trochemical impedance spectroscopy (EIS) are applied to compare the influences of MWCNTs and GO on electrochemical performances of activated carbon. The results show that the isotherms of MWCNTs and GO present the characteristics of the hybrid of multi-type isotherms. However, AC represents the feature of the mi- croporous carbon with the abundant mesopores. The response current densities are slightly enhanced through the cyclic voltammery test at the small scan rates, when MWCNTs and GO of 5% are added in AC elec- trodes. Meanwhile, the EIS demonstrates that the conductivity, frequency response, the quick charge-dis- charg capability and capacitance. Furthermore, the power charge-discharge property and the cycling perfor- mance of 1 000 cycles are also improved.
出处 《辽宁科技大学学报》 CAS 2014年第3期229-234,共6页 Journal of University of Science and Technology Liaoning
基金 国家自然基金资助项目(51102126)
关键词 多壁碳纳米管 氧化石墨 活性炭 双电层电容器 multi-walled carbon nanotubes graphite oxide activated carbon electric double-layer capacitors
  • 相关文献

参考文献9

  • 1CONWAY B.Electrochemical supercapacitors-scientific fundamentals and technological applications[M].New York:Kluwer/Plenum Press,1999:13-21.
  • 2ZHANG L L,ZHAO X S.Carbon-based materials as supercapacitor electrodes[J].Chem Soc Rev,2009,38:2520-2531.
  • 3WU Z S,WINTER A,CHEN H,et al.three-dimensional nitrogen and boron co-doped graphene for high-performance allsolid-state supercapacitors[J].Adv Mater,2012,24:38-45.
  • 4DAI L M,CHANG D W,BAEK J B,et al.Carbon nanomaterials for advanced energy conversion and storage[J].Small,2012,48:392-405.
  • 5WANG D W,LI F,LIU M,et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J].Angew Chem Int Ed,2008,47(2):373-376.
  • 6PORTET C,TABERNA P L,SIMON P,et al.Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte[J].J Power Sources,2005,139:371-378.
  • 7TIEN H W,HUANG Y L,YANG Sh Y,et al.The production of graphene nanosheets decorated with silver nanoparticles for use in transparent conductive films[J].Carbon,2011 (49):1550-1560.
  • 8FAN Y Y,LI F,CHENG H M,et al.Preparation,morphology,and microstmcture of diameter-controllable vapor-grown carbon nanofibers[J].J Mater Res,1998,13(8):2342-2346.
  • 9杨全红,刘畅,刘敏,樊彦贞,成会明,王茂章.高储氢容量单壁纳米碳管的孔隙结构[J].中国科学(E辑),2003,33(11):973-978. 被引量:6

二级参考文献13

  • 1[1]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386: 377~379
  • 2[2]Ye Y, Ahn C C, Witham C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl Phys Lett, 1999, 74(16): 2307~2309
  • 3[3]Liu C, Fan Y Y, Liu M, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286: 1127~1129
  • 4[4]Wang Q Y, Johnson J K. Hydrogen storage in single-walled carbon nanotubes at room temperature. J Phys Chem B, 1999, 103: 4809~4813
  • 5[5]Lee S M, Lee Y H. Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett, 2000, 76(20): 2877~2879
  • 6[7]Liu C, Cheng H M, Cong H T, et al. Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes. Adv Mater, 2000, 12(16): 1190~1192
  • 7[8]Gregg S J, Sing K S W. Adsorption, Surface Area and Porosity. 2nd ed. London: Academic Press, 1982. 218~228
  • 8[9]Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substance. Ⅰ. Computations from nitrogen isotherm. J Am Chem Soc, 1951,73: 373~380
  • 9[10]Webb P A, Orr C. Analytical Methods in Fine Particle Technology. Norcross, USA: Micromeritics Instrument Corp, 1997. 89~90
  • 10[11]McEnaney B. Adsorption and structure in microporous carbons. Carbon, 1988, 26(3): 267~274

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部