期刊文献+

确定河渠纵向离散系数的分位数回归法 被引量:2

Quantile regression method to determine longitudinal dispersion coefficient of river channel
下载PDF
导出
摘要 采用分位数回归的纵向离散系数研究方法和双站点浓度时间数据,对突发水污染事故中河渠的水质进行预测,并对比分析了分位数回归与最小二乘法回归效果。实例研究结果显示,运用分位数回归法确定河渠纵向离散系数效果好,第一站点的回归参数通过了97.5%置信水平下的假设检验,第二站点的预测值与实际值相关系数最高达到了0.928。同时,分位数回归法在解决偏态分布问题时较最小二乘法有明显优势。 The determination method of longitudinal dispersion coefficient based on the quantile regression and the concentration-time data of two sites were used to predict the water quality in the river channel. Moreover, the results determined by the quantile regression and least squares regression methods were compared. The example results showed that the quantile regression method is feasible and effective to determine the longitudinal dispersion coefficient of river channel. The quantile regression parameters passed the hypothesis test in the 97.5% confidence level at the first site, and the highest correlation coefficient of the predicted and actual values at the second site reached up to 0.928. In addition, quantile regression method has more advantage in solving the problems with skewed distribution than the least squares regression method.
出处 《南水北调与水利科技》 CAS CSCD 北大核心 2014年第5期63-66,76,共5页 South-to-North Water Transfers and Water Science & Technology
基金 国家水体污染控制与治理科技重大专项(2012ZX07205005) "十二五"国家科技支撑计划项目(2012BAD08B05-3)
关键词 突发水污染 纵向离散系数 偏态分布 示踪试验 分位数回归 R软件 sudden water pollution longitudinal dispersion coefficient skewed distribution tracer experiment quantile regression R software
  • 相关文献

参考文献15

二级参考文献158

共引文献247

同被引文献38

  • 1朱嵩,刘国华,王立忠,毛根海,程伟平,黄跃飞.水动力-水质耦合模型污染源识别的贝叶斯方法[J].四川大学学报(工程科学版),2009,41(5):30-35. 被引量:24
  • 2闵涛,周孝德,张世梅,冯民权.对流-扩散方程源项识别反问题的遗传算法[J].水动力学研究与进展(A辑),2004,19(4):520-524. 被引量:31
  • 3张娟娟,万伟锋.确定河流纵向离散系数的快速SA法[J].地下水,2005,27(5):396-398. 被引量:9
  • 4顾莉,华祖林.天然河流纵向离散系数确定方法的研究进展[J].水利水电科技进展,2007,27(2):85-89. 被引量:22
  • 5Hadamard J . Lectures on Cauchy's Problem in Linear Partial Differential Equations[M] . Courier Corporation, 2014.
  • 6Charles L K, Igor Y, Keith N . Solving inverse initial-value, boundary-value problems via genetic algorithm[ J] . Engineering Applications of Artificial Intelligence, 2000, 13(6) : 625-633 .
  • 7Gorelick S M, Evans B, Remson I . Identifying sources of groundwater pollution: An optimization approach[J] . Water Resources Research, 1983, 19(3) : 779-790 .
  • 8Alapati S, Kabala Z J . Recovering the release history of a groundwater contaminant using a non-linear least-squares method[J] . Hydrological Processes, 2000, 14(6) : 1003-1016 .
  • 9Sidauruk P, Cheng A H D, Ouazar D . Groundwater contaminant source and transport parameter identification by correlation coefficient optimization[J] . Groundwater, 1998, 36(2) : 208-214 .
  • 10Akqelik V, Biros G, Ghattas O, et al. A variational finite element method for source inversion for convective-dif- fusive transport[J] . Finite Elements in Analysis and Design, 2003, 39(8) : 683-705 .

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部