期刊文献+

A comparison of two no-arbitrage conditions 被引量:1

A comparison of two no-arbitrage conditions
原文传递
导出
摘要 We give a comparison of two no-arbitrage conditions for the fundamental theorem of asset pricing. The first condition is named as the no free lunch with vanishing risk condition and the second the no good deal condition. We aim to derive a relationship between these two conditions. We give a comparison of two no-arbitrage conditions for the fundamental theorem of asset pricing. The first condition is named as the no free lunch with vanishing risk condition and the second the no good deal condition. We aim to derive a relationship between these two conditions.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第4期929-946,共18页 中国高等学校学术文摘·数学(英文)
关键词 No free lunch with vanishing risk condition no good deal condition extension theorem fundamental theorem equivalent martingale measures No free lunch with vanishing risk condition, no good deal condition,extension theorem, fundamental theorem, equivalent martingale measures
  • 相关文献

参考文献1

二级参考文献16

  • 1Arnaudon M, Abdoulaye K, Thalmaier A. Brownian motion with respect to a metric depenctlng on time: aennltlOn existence and applications to Ricei flow. C R Acad Sci Paris Ser, 2008, 346:773-778.
  • 2Black F, Scholes M. The pricing of options and corporate liabilities. J Political Economy, 1973, 81:637-654.
  • 3Elworthy K D. Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Note Series, 70 Cambridge: Cambridge University Press, 1982.
  • 4Elworthy K D. Geometric aspects of diffusions on manifolds. Ecole d'Et Probabilit de Saint-Flour-XV-XVII 1987. Lect Notes Math, 1989, 1362:276-425.
  • 5Gikhman I I, Skorohod A V. Stochastic Differential Equations. Grundlehren der mathematischen Wissenschaften, 218. Berlin: Springer, 1972.
  • 6Hodges S, Carverhill A. Quasi mean reversion in an efficient stock market: the characterisation of Economic equilibria which support Black-Scholes option pricing. Economic J, 1993, 103:395-405.
  • 7Hodges S, Liao C H. Equilibrium price processes mean reversion and consumption smoothing. Working paper, the University of Warwick, 2004.
  • 8Ikeda N, Watanabe S. Stochastic Differential Equations and Diffusion Processes. Amsterdam-Tokyo: North-Holland and Kodansha Ltd., 1989.
  • 9It5 K. On Stochastic Differential Equations. Mem Amer Math Soc, vol. 4. Providence, RI: Amer Math Soc, 1951.
  • 10Kunita H. Stochastic Flows and Stochastic Differential Equations. Cambridge: Cambridge University Press, 1990.

共引文献6

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部