期刊文献+

Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics

Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics
原文传递
导出
摘要 We study the noncoInmutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by intro ducing a shift for the magnetic field, we give the Schrodinger equations in the presence of an external magnetic field both on a noncommutative space and a noncomlnutative phase space, respectively. Then by solving the SchrSdinger equations both on a noneommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. Wc demonstrate that these phases are geometric and dispersive. We study the noncoInmutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by intro ducing a shift for the magnetic field, we give the Schrodinger equations in the presence of an external magnetic field both on a noncommutative space and a noncomlnutative phase space, respectively. Then by solving the SchrSdinger equations both on a noneommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. Wc demonstrate that these phases are geometric and dispersive.
出处 《Frontiers of physics》 SCIE CSCD 2014年第4期446-450,共5页 物理学前沿(英文版)
基金 The work was supported by the National Natural Science Foundation of China (Grant Nos. 11165014 and 11175053).
关键词 noncommutative quantum mechanics electric quadrupole moment quantum phase nonconnnutative phase space noncommutative quantum mechanics, electric quadrupole moment, quantum phase,nonconnnutative phase space
  • 相关文献

参考文献26

  • 1S. Godfrey and M. A. Doncheski, Signals for noncommuta- rive QED in e/and /collisions, Phys. Rev. D, 2001, 65(1): 015005.
  • 2M. Haghighat and M. M. Ettefaghi, Parton model in Lorentz invariant noncommutative space, Phys. Rev. D, 2004, 70(3): 034017.
  • 3A. Devoto, S. Chiara, and W. W. Repko, Noncommutative QED corrections to e+e- γ/ at linear collider energies, Phys. Rev. D, 2005, 72(5): 056006.
  • 4X. Calmer, Quantum electrodynamics on noncommutative spacetime, Eur. Phys. J. C, 2007, 50(1): 113.
  • 5M. Chaichian, A. Demichev, P. Prenajder, M. M. Sheikh- Jabbari, and A. Tureanu, Aharonov Bohm effect in noncom- mutative spaces, Phys. Lett. B, 2002, 527(1 2): 149.
  • 6M. Chaichian, A. Demichev, P. Presnajder, M. M. Sheikh- Jabbari, and A. Tureanu, Quantum theories on noncommu- tative spaces with nontrivial topology: Aharonov Bohm and Casimir effects, Nucl. Phys. B, 2001, 611(1 3): 383.
  • 7H. Falomir, J. Gamboa, M. Loewe, F. M6ndez, and J. Rojas, Testing spatial noncommutativity via the Aharonov Bohm effect, Phys. Rev. D, 2002, 66(4): 045018.
  • 8K. Li and S. Dulat, The Aharonov Bohm effect in noncom- mutative quantum mechanics, Eur. Phys. J. C, 2006, 46(3): 825.
  • 9B. Mirza and M. Zarei, Non-commutative quantum mechan- ics and the Aharonov Casher effect, Eur. Phys. J. C, 2004, 32(4): 583.
  • 10K. Li and J. H. Wang, The topological AC effect on non- commutative phase space, Eur. Phys. J. C, 2007, 50(4): 1007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部