期刊文献+

Dynamics of rotator chain with dissipative boundary 被引量:2

Dynamics of rotator chain with dissipative boundary
原文传递
导出
摘要 We study the deternfinistic dynanfics of rotator chain with purely mechanical driving on the boundary by stability analysis and numerical sinmlation. Globally synchronous rotation, clustered synchronous rotation, and split synchronous rotation states are identified. In particular, we find that the single-peaked wariance distribution of angular momenta is the consequence of the deterministic dynamics. As a result, the operational definition of temperature used in the previous studies on rotator chain should be revisited. We study the deternfinistic dynanfics of rotator chain with purely mechanical driving on the boundary by stability analysis and numerical sinmlation. Globally synchronous rotation, clustered synchronous rotation, and split synchronous rotation states are identified. In particular, we find that the single-peaked wariance distribution of angular momenta is the consequence of the deterministic dynamics. As a result, the operational definition of temperature used in the previous studies on rotator chain should be revisited.
出处 《Frontiers of physics》 SCIE CSCD 2014年第4期511-518,共8页 物理学前沿(英文版)
基金 This work was financially supported by grants from the National Natural Science Foundation of China (Grant No. 11075016) and the Foundation for Doctoral Training from Ministry of Education.
关键词 rotator chain energy conduction rotator chain, energy conduction
  • 相关文献

参考文献20

  • 1A. Dhar, Heat transport in low-dimensional systems, Adv. Ph,js., 2008, 57(5): 457.
  • 2S. Lepri, R. Livi, and A. Politi, Heat conductioa in chains of nonlinear oscillators, Phys. Re. Lett., 1997, 78(10): 1896.
  • 3G. Ca.sati, J. Ford, F. Vivaldi, and W. M. Visscher, One- dimensional classical many-body system having a normal thermal conductivity, Phys. Rev. Lett., 1984, 52(21): 1861.
  • 4A. V. Savin and O. V. Oendehnan, Heat conduction in one- dimensional lattices with on-site potential, Phys. Rev. E, 2003, 67(4): 041205.
  • 5Y. Zhong, Y. Zhang, J. Wang, and H. Zhao, Normal heat conduction in one-dimensional momentum conserving lat- tices with asymmetric interactions, Phys. tev. E, 2012, 85(6): 060102.
  • 6C. Giardink, R. Livi, A. Politi, and M. Vassalli, Finite ther- inM conductivity in 1D lattices, Phys. Rev. Lett., 2000, 84(10): 21440.
  • 7V. Gendelman and A. V. Savin, Normal heat conductiv- ity of the one-dimensional lattice with periodic potential of nearest-neighbor interaction, Phys. Rev. Lett., 2000, 84(11): 2381.
  • 8A. Iacobucci, F. Legoll, S. Olla, and G. Stoltz, Negative ther- mal conductivity of chains of rotors with mechanical forcing, Phys. Hey. E, 2011, 84(6): 061108.
  • 9D. R. Nelson and D. S. Fisher, Dynamics of classical XY spins in one and two dimensions, Phys. Rev. B, 1977. 16(11): 4945.
  • 10C. Anteneodo and C. Tsallis sitivity to initial conditions: tions, Phys. Rev. Lett., 1998.

同被引文献4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部