期刊文献+

四元数体上A型典型李代数MAD子代数的共轭性

A Conjugacy Theorem for the MAD Subalgebras of Classical Lie Algebras of Type A Over the Quarternions
下载PDF
导出
摘要 证明了四元数体上n阶方阵构成的A型典型李代数的极大交换ad可对角化子代数的维数为n-1,并且共轭于迹为零的实对角矩阵构成的子代数. In this paper, we prove that the maximal abelian ad-diagonalizable subalgebra of the classical Lie algebras of type A consisiting of n x n matrices over the quaternions always has dimension n - 1 and it is conjugated with the algebra of real diagonal matrices of trace zero
机构地区 同济大学数学系
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第4期769-776,共8页 Acta Mathematica Scientia
基金 国家自然科学基金(11071187)资助
关键词 四元数 典型李代数 MAD子代数 共轭 Quaternions Classical Lie algebras MAD subalgebras Conjugate Quaternions Classical Lie algebras MAD subalgebras Conjugate
  • 相关文献

参考文献11

  • 1Allison B, Azam S, Berman S, Gao Y, Piallzola A, Exteilded affine Lie algebras, Memories of the American Mathematical Society, 1997, 603:128.
  • 2Allison B, Berman S, Pianzola A. Covering algebras I: extended affine Lie algebras. 3 Algebra, 2002, 250: 485-516.
  • 3Covering algebras Ⅲ: loop algebras of Kak-Moody Lie algehras. J Reine Angew Math, 2004, 571: 39 71.
  • 4Berman S, Morita 3. Conjugacy results for the Lie algebra sl2 over an algebra which is a UFD. Contemp Math, 2007, 42:: 17-40.
  • 5Gao Y. Representations of extended affine Lie algebras coordinated by certain quantum tori, Compositio Mathematica, 2000, 1:3:1 25.
  • 6Hegh-Krohn R, Torresani B, Classification and construction, of quasisimple Lie algebras. J Funct Anal, 1990, 89:106-136.
  • 7Humphreys J E. Introduction to Lie Algebras and Representation Theory. New York: Springer, 1972.
  • 8Jacobson N. Lie Algebras. New York, London: Wiley Interscience, 1962.
  • 9姜同松,庄维欣.四元数体上矩阵的对角化和Schur定理(英文)[J].临沂师范学院学报,2002,24(3):5-8. 被引量:2
  • 10Potrson D H, Kac V G. Infinite flag varieties and conjugacy theorems, PNAS, 1983, 80(6): 1778-1782.

二级参考文献1

  • 1Nathan Jacobson,Basic Algebra I,W. H.Freeman and Company[].San Francisco.1974

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部