期刊文献+

具边界相交交界面的拟线性椭圆方程组的挠射问题

Diffraction Problems for Quasilinear Elliptic Systems with Boundary Intersecting Interfaces
下载PDF
导出
摘要 研究有界区域上的n维拟线性椭圆方程组的挠射问题,其中方程的系数在交界面上允许间断,而且交界面允许与区域外边界相交.通过构造一个交界面与外边界不相交的近似挠射问题,利用估计和逼近方法,并讨论弱解的正则性,得到了问题解的存在性,并将这些结果应用到两种群Lotka-Volterra互惠模型. The paper deals with the n-dimensional diffraction problem for quasilinear elliptic system oil a bounded domain, where the coefficients of the equations are allowed to be discon- tinuous oil the interfaces and the interfaces are allowed to intersect with the outer boundary of the domain. By constructing an approximation diffraction problems with interfaces which do not intersect with the outer boundary, using various estimates and approximation method, and investigating the regularity of the weak solutions, we get the existence of solutions of the problem. An application is given to the Lotka-Volterra cooperation model with two cooperating species.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第4期777-788,共12页 Acta Mathematica Scientia
基金 四川省教育厅自然科学基金(10ZC127) 成都师范学院科研基金(CSYXM12-06)资助
关键词 挠射问题 椭圆方程组 边界相交的交界面 逼近方法 Diffraction problem Elliptic systems Boundary intersecting interfaces Approximation method
  • 相关文献

参考文献11

  • 1Evans L C. A free boundary problem: the flow of two immiscible fluids in a one-dimmensional porous medium. 1 Indiana Univ Math J, 1977, 26:914-932.
  • 2Shelukhin V. A free-boundary value problem for the Navier-Stokes equations of compressible shear flows. Mate Contemp, 1998, 15:231 -248.
  • 3Reusken A, Nguyen T H. Nitsche's method for a transport problem in two-phase incompressible flows. Journal of Fourier Analysis and Applications, 2009, 15:663-683.
  • 4Yi F H. Global classical solution of Muskat free boundary problem. J Math AnM Appl, 2003, 288:442-461.
  • 5Bear J. Dynamics of Fluids in Porous Media. New York: American Elzevier Publishing Company Inc, 1972.
  • 6Rivkind V, Ural ' tseva N. ClassicM solvability and linear schemas for the approximated solutions of the diffraction problem for quasilinear elliptic and parabolic equations. Mat Zametki (in Russian), 1972, 3: 69- 111.
  • 7Boyadjiev G, Kutev N. Diffraction problems for quasilinear reaction-diffusion systems. Nonlinear Anal, 200a, 55:905 -926.
  • 8Tan Q J. Systems of quasilinear parabolic equations with discontinuous coefficients and continuous delays. Advances in Difference Equations, 2011, 2011:1-25.
  • 9Tan Q J, Leng Z J. The method of upper and lower solutions for diffraction problems of quasilinear elliptic reaction-diffusion systems. J Math Anal Appl, 2011, 380:363 -376.
  • 10Tan Q J. Leng Z J. The regularity of the weak solutions for the n-Dimensional quasilinear elliptic equations with discontinuous coefficients. Journal of Mathematical Research and Exposition, 2008, 28:779- 788.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部