期刊文献+

压缩回归学习算法的泛化界 被引量:1

Generalization Bounds of Compressed Regression Learning Algorithm
下载PDF
导出
摘要 研究了压缩最小平方回归学习算法的泛化性问题.利用随机投影、覆盖数等理论以及概率不等式得到了该学习算法的泛化误差上界.所获结果表明:压缩学习虽以增大逼近误差的方式降低样本误差,但其增量是可控的.此外,通过压缩学习,在一定程度上克服了学习过程中所出现的过拟合现象. This paper addresses the generalization performance of compressed least-square regression learning algorithm. A generalization error bound of this algorithm is established by using the random projection and the theory of the covering number. The obtained results show that the compressed learning can reduce the sample error a.t the price of increasing the approximation error, but the increment can be controlled. In addition, by using compressed projection, the overfitting problem for the learning algorithm can be overcome to a certain extent.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2014年第4期905-916,共12页 Acta Mathematica Scientia
基金 国家自然科学基金(61272023 91330118 11301494)资助
关键词 机器学习 压缩感知 回归学习算法 误差界 逼近 Machine learning Compressed sensing Regression learning algorithm Error bound Approximation
  • 相关文献

参考文献19

  • 1Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2:121 -167.
  • 2Blum A. Random projection, margins, kernels, and feature-selection. Lecture Notes in Computer Sciences, 2006, 3940:52-68.
  • 3Cand:s E J. Compressive sampling. Proceedings of the International Congress of Mathematicians, 2006, 3:1433 -1452.
  • 4Cand:s E J. The restricted isometry property and its implications for compressed sensing. Compte Rendus Mathematique, 2008, 346:589 592.
  • 5Cand:s, E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Infor Theory, 2006, 52:5406- 5425.
  • 6Calderbank R, Jafarpour Schapire S R. Compressed Learning: Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain. Technical Report. Houston, TX: Rice University, 2009.
  • 7Cucker F, Smale S. On the mathematical foundations of learning. Bull Amer Math Soc (New Series), 2001, 39:1-49.
  • 8Donoho D L. Compressed sensing. 1EEE Trans Infor Theory, 2006, 52:1289-1306.
  • 9Lee W S, Bartlett P L, Williamson R C. The importance of convexity in learning with least square loss. IEEE Trans Infor Theory, 1998, 44:1974 -1980.
  • 10Maillard O A, Munos R. Linear regression with random projections. The Journal of Machine Learning Research, 2012, 13(1): 2735-2772.

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部