期刊文献+

基于人工神经网络算法的新疆百里风区风速预报方法研究 被引量:2

Wind speed prediction method based on ANN arithmetic for 100-kilometer wind area in Xinjiang
原文传递
导出
摘要 为了给铁路运输提供准确的大风预警,文中将人工神经网络算法应用于新疆百里风区的风速预报,分别采用BP神经网络与Elman神经网络建立模型,对实际历史风速数据进行仿真预测。利用实时自动站资料预测未来20分钟瞬间风速并做预报对比检验。结果表明:与BP神经网相比,Elman人工神经网络模型具有更好的拟合效果,独立样本预报及实际预报的检验结果均达到了较为精确的效果,具有实际应用意义。 In order to provide accurate gale early warning for railway transportation in Xinjiang, the Artificial Neural Network arithmetic was used to the wind speed forecast at 100 - kilometer wind area. In this paper, the forecast model was established by using BP neural network and Elman neural network respectively, and applied to simulate and forecast the real historical wind speed data. Using measured data of automatic weather station nearby railway, such as pressure, temperature and instantaneous wind speed, the instantaneous wind speeds in first 20 minutes were predicted. The simulation result show that the predicted accuracy by Elman neural network is superior to that by BP Artificial Neural Network, and its inspection result of independent sample forecast and actual forecast are very accurate. The research results indicate that the Elman neural network used for wind speed forecast is of practical.
出处 《干旱区资源与环境》 CSSCI CSCD 北大核心 2014年第8期94-98,共5页 Journal of Arid Land Resources and Environment
基金 2011年中国气象局城市气象防灾减灾专项(铁路气象服务试点)项目资助
关键词 风速预报 ELMAN网络 BP网络 百里风区 wind speed forecasting Elman neural network BP neural network 100- kilometer wind area
  • 相关文献

参考文献18

二级参考文献99

共引文献231

同被引文献17

  • 1MORIMOTO S, NAKAYAMA H, SANADA M, et al. Sensor less output maximization control for variab- le-speed wind generation system using IPMSG [ J ]. IEEE Trans on Industry Applications, 2005,41 ( 1 ) : 60 67.
  • 2SENJYU T, NAKASONE N, YONA A, et al. Operation strategies for stability of gearless wind power generation systems [ C ]//Proceedings of IEEE/ PES General Meeting 2008 ( GM 2008 ), CD-ROM, Pittsburgh, USA, 2008: 1-7.
  • 3HAQUE M E, NEGNEVITSKY M, MUTTAQI K M. A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous gene- rator [ J ]. IEEE Trans on Industry Applications, 2010,46( 1 ) : 591-598.
  • 4QIAO W, QU L, HARLY R G. Control of IPM synchronous generator for maximum wind power generation considering magnetic saturation[ J ]. IEEETrans on Industry Applications, 2009, 45 ( 3 ) : 1095-1105.
  • 5MUYEEN S M, TAKAHASHI R, MURATA T, et al. Integration of an energy capacitor system with a variable-speed wind generator [ J ]. IEEE Trans on Energy Conversion, 2009,24 (3) : 79-85.
  • 6KANELLOS F D, itATZIARGYRIOU N D. Control of variable speed wind turbines in isolated mode of operation [ J ]. IEEE Trans on Energy Conversion, 2008,23(2) : 314-320.
  • 7RAZAKSM, GOTO H, GUO H J, et al. A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion Proceedings of the International Conference on Electr- ical Machines 2008 (ICEMS 2008 ), Vilamoura, 2008 : 726-732.
  • 8SLOOTWEG J G. General model for representing variable speed wind turbines in power system dynamics simulations [ J ]. IEEE Trans on Power Systems(2003), 2003,18 ( 1 ) : 144-151.
  • 9UEHARA A, PRATAP A, GOYA T, et al. A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS [ J ]. IEEE Trans On Energy Conversion, 2011 (26) : 550-558.
  • 10CONSTANTINESCU E M, ZAVALA V M, ROCK- LIN M, et al. Computational framework for uncertainty quantification and stochastic optimization in unit commitment with wind power generation [ J ]. Power Systems IEEE Transactions on, 2011,26 ( 1 ) : 431-441.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部