期刊文献+

具有列维飞行与布朗运动特征的循环竞争博弈及物种稳定共存条件 被引量:2

Cyclical game coupling with Levy flight and Brownian motion and stable coexistence conditions of species
原文传递
导出
摘要 循环竞争博弈常被用来研究物种多样性.以前有关循环竞争博弈的研究工作所考虑的相互作用距离模式包括最近邻、取固定距离或一定距离以内的随机值,这与实际情况不相符.考虑到实际生物系统中物种个体做列维飞行与布朗运动的情况广泛存在,综合考虑了最近邻相互作用模式和列维飞行(布朗运动)长程相互作用模式,对循环竞争博弈及保持物种多样性的条件进行了研究.得到了最大飞行距离与选择概率的临界关系(包括Logistic式和指数式关系),进一步得到了幂指数与选择概率的临界关系,以及保持物种共存的条件. Cyclical game is often used to study the biodiversity in ecosystem. However, the interaction distance mode con-sidered in previous studies of cyclical game is only the interaction between nearest neighbors, a fixed distance, or a random value of fixed distance among the individuals of species. This is not consistent with the actual situation. In this paper, considering the fact that Levy flight and Brownian motion widespreadly exist in ecosystem, and comprehensively considering the nearest-neighbor-interaction and long-range-interaction given by Levy flight and Brownian motion, the cyclical game and conditions of maintaining biodiversity are investigated. The critical relation of maximal step length of flight versus choosing probability is presented, including Logistic and exponent relations. Further the critical relation between power-law exponent and choosing probability is found. The condition of maintaining species coexistence is also found.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第16期435-442,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61174150 60974084) 教育部新世纪优秀人才支持计划(批准号:NCET-09-0228)资助的课题~~
关键词 循环竞争博弈 列维飞行 布朗运动 物种多样性 cyclical game Levy flight Brownian motion biodiversity
  • 相关文献

参考文献38

  • 1Sinervo B, Lively C M 1996 Nature 380 240.
  • 2Kerr B, Riley M A, Feldman M W, Bohannan B J M 2002 Nature 418 171.
  • 3Kirkup B C, Riley M A 2004 Nature 428 412.
  • 4Jackson J B C, Buss L 1975 Proc. Natl. Acad. Sci. USA 72 5160.
  • 5Paquin C E, Adams J 1983 Nature 306 368.
  • 6Gilg O, Hanski I, Sittler B 2003 Science 302 866.
  • 7Reichenbach T, Mobilia M, Frey E 2007 Nature 448 1046.
  • 8Reichenbach T, Mobilia M, Frey E 2007 Phys. Rev. Lett. 99 238105.
  • 9Reichenbach T, Mobilia M, Frey E 2008 J. Theor. Biol. 254 368.
  • 10Reichenbach T, Frey E 2008 Phys. Rev. Lett. 101 058102.

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部