期刊文献+

质子交换膜水电解析氧电催化复合材料合成、微结构调控及性能研究 被引量:1

Microstructure control and performance of electro-catalysis composite materials for oxygen evolution reaction(OER) in proton exchange membrane water electrolysis
原文传递
导出
摘要 质子交换膜水电解(PEMWE)制氢技术以其独特的优势被视为未来全球能源与环境协调发展的优先选择.析氧电催化剂是PEMWE制氢技术发展的关键瓶颈之一,主要原因在于其表面的析氧反应(OER)可逆性差、反应动力学过程缓慢.为了提高析氧过程反应动力学,需要研制高效的电催化剂.本文从材料组分与结构的角度出发,采用具有质子传导特性的复合载体,探索微结构可控复合载体材料的合成技术,开发出一系列的高效氧电极复合载体材料以及载体催化剂.实现载体材料高质子、电子导电性及微结构的可控优化,对于PEMWE的理论研究和应用都具有重要意义. Proton exchange membrane water electrolysis (PEMWE) is regarded as the prior selection of the harmonious development of energy and environment in the future due to its unique advantages. However, catalyst for oxygen evolution reaction (OER) has been the critical bottleneck in the development of proton exchange membrane water electrolysis because of the poor reversibility and slow reaction kinetics. Hence, high performance catalyst for OER should be developed first to improve the kinetics. From the view point of material and structure, the paper aims at developing the composite support material which possesses intrinsic protonic conductivity and the improved electronic conductivity together with the optimization of the microstructure structures. The electro-catalysis composite materials will contribute to the theoretical research and application of PEMWE.
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第8期1241-1254,共14页 SCIENTIA SINICA Chimica
基金 国家重点基础研究发展计划(2013CB934002) 国家高技术研究发展计划(2012AA053401) 国家自然科学基金(51274028) 北京市自然科学基金(2122041)资助
关键词 质子交换膜水电解 析氧电催化剂 复合载体 微结构 proton exchange membrane water electrolysis, oxygen reduction reaction catalysts, microstructure,composite support
  • 相关文献

参考文献53

  • 1Trasatti S. Water electrolysis: who first? J Electroanal Chem, 1999, 476: 90-91.
  • 2Hijikata T. Research and development of international clean energy network using hydrogen energy (WE-NET). Int J Hydrogen Energy, 2002, 27: 115-129.
  • 3Kreuter W, Hofmann H. Electrolysis: the important energy transformer in a world of sustainable energy. Int J Hydrogen Energy, 1998, 23: 661-666.
  • 4Levie RD. The electrolysis of water. J Electroanal Chem, 1999, 476: 92-93.
  • 5Neagu C, Jansen H, Gardeniers H, Elwenspoek M. The electrolysis of water: an actuation principle for MEMS with a big opportunity. Mechatronics, 2000, 10: 571-581.
  • 6Millet P, Ngameni R, Grigoriev SA, Mbemba N, Brisset F, Ranjbari A, Etievant C. PEM water electrolyzers: from electrocatalysis to stack development. Int J Hydrogen Energy , 2010, 35: 5043-5052.
  • 7Ghosh CR, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev, 2011, 112: 2373-2433.
  • 8Lee J, Jeong B, Ocon JD. Oxygen electrocatalysis in chemical energy conversion and storage technologies. Curr Appl Phys, 2013, 13: 309-321.
  • 9Carmo M, Fritz DL, Mergel J, Stolten D. A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy, 2013, 38: 4901-4934.
  • 10Park S, Shao Y, Liu J, Wang Y. Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective. Energ Environ Sci, 2012, 5: 9331-9344.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部