期刊文献+

用于锂离子电池的中空无机非金属纳米材料的研究进展

Template-free method for hollow structured nanomaterials and their application for lithium batteries
原文传递
导出
摘要 锂离子电池电极材料在充放电过程中由于锂离子嵌入和脱嵌,电极材料在膨胀和收缩过程中极易粉化而导致电池失效.无机中空纳米材料具有较高的比表面积,可调的空腔体积以及壳层厚度,并且每一个中空颗粒都可以作为一个微反应室,从而增加了反应界面,作为锂电池电极材料,无机中空纳米材料能够适应充放电过程中颗粒的膨胀和收缩,表现出优异的性能.面对传统模板法的局限性,基于Kirkendall效应等新的机理或方法以其操作步骤简单、无模板等优点,有望实现低成本的规模化生产.本文综述了利用Kirkendall效应,Oswald熟化和溶剂热3种机理或方法制备中空无机纳米材料作为锂离子电池电极材料的最新研究进展,并对其应用前景进行了展望. In the charging and discharging process, intercalation and deintercalation of Li+ bring about the expansion and extraction of the electrode material, resulting in the electrode materials pulverizing and eventually causing cell performance decay. The relative high surface area, tunable void volume and shell thickness, and every hollow particle of inorganic hollow structured nanomaterials serve as a tiny reaction chamber which increased the reaction interfaces. Inorganic hollow nanomaterials are able to adapt to the volume expansion and contractionduring charging and discharging process, exhibiting excellent electrochemical performance for lithium ion battery. Compared to the traditional method, new mechanisms and methods based on Kirkendall effect etc., possess simple preparation approach and template-free merits which are expected to achieve low-cost mass production. This paper reviews the latest research progress of lithium ion battery electrode materials that are based on the Kirkendall effect, Oswald ripening and solvothermal for the preparation of inorganic hollow nanomaterials. In addition, we introduce briefly application prospects.
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第8期1313-1324,共12页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(21306060) 新世纪优秀人才支持计划(NCET-13-0237) 博士点新教师基金(20130142120039) 中央高校基本科研业务费(2013TS136,2014YQ009)项目资助
关键词 中空纳米材料 非模板法 锂电池 电极材料 hollow structured nanomaterials, template-free, lithium battery, electrode
  • 相关文献

参考文献67

  • 1Melot BC, Tarascon JM. Design and Preparation of Materials for Advanced Electrochemical Storage. Acc Chem Res, 2013, 46: 1226-1238.
  • 2Cao AM, Hu JS, Liang HP, Wan LJ. Self-assembled vanadium pentoxide V2O5 hollow microspheres from nanorods and their application in lithium-ion batteries. Angew Chem Int Ed, 2005, 44: 4391-4395.
  • 3Jia G, You H, Liu K, Zheng Y, Guo N, Zhang H. Highly Uniform Gd2O3 Hollow Microspheres: Template-Directed Synthesis and Luminescence Properties. Langmuir, 2009, 26: 5122-5128.
  • 4Li X, Xiong Y, Li Z, Xie Y. Large-Scale Fabrication of TiO2 Hierarchical Hollow Spheres. Inorg Chem, 2006, 45: 3493-3495.
  • 5Wang Y, Su X, Lu S. Shape-controlled synthesis of TiO2 hollow structures and their application in lithium batteries. J Mater Chem, 2012, 22: 1969-1976.
  • 6Kim H, Cho J. Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material. Chem Mater, 2008, 20: 1679-1681.
  • 7Vu A, Qian Y, Stein A. Porous electrode materials for lithium-ion batteries—how to prepare them and what makes them special. Adv Energy Mater, 2012, 2: 1056-1085.
  • 8Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP. Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science, 2004, 304: 711-714.
  • 9Zhang G, Wang W, Yu Q, Li X. Facile one-pot synthesis of PbSe and NiSe2 hollow spheres: kirkendall-effect-induced growth and related properties. Chem Mater, 2009, 21: 969-974.
  • 10Fan HJ, Knez M, Scholz R, Hesse D, Nielsch K, Zacharias M, Gosele U. Influence of surface diffusion on the formation of hollow nanostructures induced by the kirkendall effect: the basic concept. Nano Lett, 2007, 7:993-997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部