期刊文献+

腈基功能化有机硅基电解液在4.4V钴酸锂/石墨锂离子电池中的性能研究 被引量:2

Nitrile group functionalized organosilicon compound as electrolytes for 4.4 V LiCoO_2/graphite full cell
原文传递
导出
摘要 研究了3-丙基腈-甲氧基乙氧基-二甲基硅烷(SN1)作为电解液共溶剂对高电压钴酸锂/石墨全电池电化学性能的影响.在商业烷基碳酸酯电解液里掺入30%SN1(体积分数),钴酸锂/石墨全电池在4.4 V截止电压下仍表现出良好的循环稳定性和倍率性能:以0.5 C充放电,首次放电比容量为154 mA h/g,循环150周后,容量保持率为92.9%;当放电倍率增加到1和1.5 C时,放电容量分别为143和133 mA h/g.电化学阻抗谱、扫描电镜和傅里叶红外光谱的结果表明,耐高电压腈基功能化有机硅化合物的引入有效抑制了共溶剂电解液在正极材料表面的分解,压制了循环过程中电极极化的增长,为电极/电解液界面的Li+扩散和电荷转移提供了有利的动力学条件. Dimethyl-2-methoxylethoxyl-3-nitrilepropylsilane (SN1) is miscible with the commercial carbonate electrolyte and used as co-solvent to form hybrid electrolyte with a content up to 30 vol%. By using such hybrid electrolyte, the LiCoOJgraphite full cell exhibits good cyclic stability and rate capability at an upper cutoff voltage of 4.4 V, showing an initial specific capacity of 154 mA h/g and 92.9% capacity retention after 150 cycles at 0.5 C rate. When the rate is increased to 1 and 1.5 C, the cell still retains a specific capacity of 143 and 133 mA h/g, respectively. The results of scanning electron microscopy, fourier transform infrared and electrochemical impedance spectroscopy show that SN1 as a co-solvent reduces the decomposition of the electrolyte and suppresses the polarization growth of the cell over cycling which facilitates Li+ diffusion and electron transportation at electrode/ electrolyte interface.
出处 《中国科学:化学》 CAS CSCD 北大核心 2014年第8期1325-1331,共7页 SCIENTIA SINICA Chimica
基金 中国科学院广州能源研究所所长创新基金(y307r51001) 中国科学院"百人计划"项目 广州市科技计划(11A44061500) 国家自然科学基金(50973112) 广州市协同创新项目以及广州市黄埔区科技计划项目(201423)资助
关键词 有机硅化合物 高电压电解液 锂离子电池 腈基 organosilicon compound, high-voltage electrolyte, lithium-ion battery, nitrile group
  • 相关文献

参考文献29

  • 1Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for advanced lithium ion batteries. Mat Sci Eng R, 2012, 73: 51-65.
  • 2McDowell MT, Lee SW, Nix WD, Cui Y. 25th Anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater, 2013, 25: 4966-4984.
  • 3Li B, Xing L, Xu M, Lin H, Li W. New solution to instability of spinel LiNi0.5Mn1.5O4 as cathode for lithium ion battery at elevated temperature. Electrochem Commun, 2013, 34: 48-51.
  • 4Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104: 4303-4417.
  • 5Xiang J, Wu F, Chen RJ, Li L, Yu HG. High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J Power Sources, 2013, 233: 115-120.
  • 6Hu M, Pang X, Zhou Z. Recent progress in high-voltage lithium ion batteries. J Power Sources, 2013, 237: 229-242.
  • 7Goodenough JB, Park KS. The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 2013, 135: 1167-1176.
  • 8Zhang ZC, Lyons LJ, Jin JJ, Amine K, West R. Synthesis and ionic conductivity of cyclosiloxanes with ethyleneoxy-containing substituents. Chem Mater, 2005, 17: 5646-5650.
  • 9Hooper R, Lyons LJ, Mapes MK, Schumacher D, Moline DA, West R. Highly conductive siloxane polymers. Macromolecules, 2001, 34: 931-936.
  • 10Zhang ZC, Jin JJ, Bautista F, Lyons LJ, Shariatzadeh N, Sherlock D, Amine K, West R. Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes. Solid State Ion, 2004, 170: 233-238.

二级参考文献28

  • 1Johnson B A, White R E. Characterization commercially available lithium-ion batteries. J Power Sources, 1998, 70:48--54
  • 2Antolini E. LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties.Solid State Ionics, 2004, 170:159--171
  • 3Chen Z, Dahn J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochimica Acta, 2004, 49: 1079---1090
  • 4Shibubuya M, Nishina T, Matsue T, et al. In situ conductivity measurements of LiCoO2 film during insertion/extraction by using interdigitated microarray electrodes. J Electrochem Soc, 1996, 143:3157--3160
  • 5Tukamoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc, 1997, 144:3164--3168
  • 6Lala S M, Montoro L A, Lemos V, et al. The negative and positive structural effects of Ga doping in the electrochemical performance of LiCoO2. Electrochimica Acta, 2005, 51: 7--13
  • 7Cao H, Xia B, Zhang Y, et 8.1. LiAIO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics, 2005, 176:911-914
  • 8Ceder G, van der Ven A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochimica Acta, 1999, 45:131--150
  • 9van der Ven A, Aydinol M K, Ceder G, et al. First-principles investigation of phase stability in LixCoO2. Phys Rev B, 1998, 58(6):2975--2987
  • 10van Elp J, Wieland J L, Eskes H, et al. Electronic structure of CoO,Li-doped CoO and LiCoO2. Phys Rev B, 1991, 44(12): 6090--6103

共引文献9

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部