期刊文献+

自适应门限GM-CPHD多目标跟踪算法 被引量:13

Adaptive Gating GM-CPHD Filter for Multitarget Tracking
下载PDF
导出
摘要 带有势估计的高斯混合概率假设密度滤波(GM-CPHD)作为一种杂波环境下目标数可变的检测前跟踪方法,将复杂的多目标状态空间的运算转换为单目标状态空间内的运算,有效避免了多目标跟踪中复杂的数据关联问题,但该方法的计算复杂度与观测数的3次方成正比,在密集杂波情况下计算量十分巨大。针对该方法计算复杂度高的问题,提出利用一种最大似然自适应门限的快速算法,该算法首先利用自适应门限对观测进行处理,然后仅利用处于门限内的有效观测进行GM-CPHD算法的更新步计算,大大降低了算法的计算复杂度。实验结果证明,本文方法在有效降低计算复杂度的同时,在多目标跟踪效果方面与GM-CPHD相当,优于GMPHD滤波算法。 The Gaussian mixture cardinalized probability hypothesis density filter (GM-CPHD)is a recursive Bayesian filter for track-before-detect multitarget tracking algorithm in clutter,which propagates the first moment of the multi-target posterior density,incorporating track initiation and termination without consideration of measurement-to-track association.Due to the fact that GM-CPHD filer has a great computational complexity:O(nm3),where n is the number of targets and m is the cardinality of measurement set,an adaptive gating algorithm is proposed.The algorithm reduces the measurement set by using a maximum likelihood adaptive gate,and only the measurements falling into the gate are used to update the PHD estimation.Simulation results show that the proposed algorithm reduces the computational complexity obviously,and obtains a similar performance.
作者 章涛 吴仁彪
出处 《数据采集与处理》 CSCD 北大核心 2014年第4期549-554,共6页 Journal of Data Acquisition and Processing
基金 国家科技支撑计划课题(2011BAH24B12)资助项目 国家自然科学基金委员会与中国民用航空局联合(U1233112 U1233109)资助项目 国家自然基金青年科学基金(11102134)资助项目 中央高校基本科研业务费中国民航大学专项基金(3122014D006)资助项目
关键词 多目标跟踪 检测前跟踪 带有势估计的概率假设密度滤波 自适应门限 multitarget tracking track-before-detect(TBD) gaussian mixture CPHD adaptive gating
  • 相关文献

参考文献12

  • 1Bar-Shalom Y, Li X R. Multitarget multisensor tracking: principles and techniques[M]. Storrs, CT YBS Publishing, 1995.
  • 2Bar Shalom Y, Fortmann T E. Tracking and data as- sociation[M]. San Diego, CA: Academic Press, 1988:1 -6.
  • 3Mahler R. Random sets: unification and computation for information fusion-A retrospective assessment [C]//Proceeds of the ?th International Conference on Information Fusion. Stockholm, Sweden, [s. n. ]: 2004:1-20.
  • 4Mahler R. Multi target Bayes filtering via first-order multi target moments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4): 1152-1178.
  • 5章飞,周杏鹏,陈小惠.基于粒子滤波的交互式多模型多机动目标跟踪[J].数据采集与处理,2011,26(2):181-187. 被引量:8
  • 6Mahler R. PHD filters of higher order in target num- ber[J]. IEEE Transactions on Aerospace and Elec- tronic Systems, 2007, 43(4) :1523-1543.
  • 7Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J]. IEEE Transactions on Aerospace and Elec- tronic Systems, 2005, 41(4):1224-1245.
  • 8Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
  • 9Zhang H J, Jing Z L, Hu S Q. Gaussian mixture CPHD filter with gating technique[J]. Elsevier Jour- nal on Signal Processing, 2009 (89), 1521-1530.
  • 10Vo B T, Vo B N. Cantoni A. Analytic implementa- tions of the cardinalized probability hypothesis densi- ty filter[J]. IEEE Transaction on Signal Processing, 2007(55): 3553-3567.

二级参考文献12

  • 1Puranik S P, Tugnait J K. Tracking of multiple maneuvering targets using multisean JPDA and IMM filtering [J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(1) : 23-35.
  • 2Seokwon Yeom. Efficient multi-target tracking with sub-event IMM-JPDA and one-point prime initialization[C]//IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Seoul, Korea: IEEE,2008:451-456.
  • 3Farrell III, William J. Interacting multiple model filter for tactical ballistic missile tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 2008, 44(2) : 418-426.
  • 4Ryu J H, Han D H, Lee K K, et al. Predictionbased interacting multiple model estimation algorithm for target tracking with large sampling periods [J]. International Journal of Control, Automation and Systems, 2008, 6(1): 44-53.
  • 5Kirubarajan T, Bar-Shalom Y. Kalman filter versus IMM estimator: When do we need the latter[J]. IEEE Trans on Aerospace and Electronic Systems, 2003, 39(4): 1452-1457.
  • 6Boers Y, Driessen J N. Interacting multiple model particle filter[J]. IEE Proc--Radar Sonar Navig, 2003, 150(5): 344-349.
  • 7Yang N, Tian W, Jin Z. An interacting multiple model particle filter for maneuvering target location [J]. Measurement Science and Technology, 2006, 17 (6): 1307-1311.
  • 8Angelova A, Mihaylova M. Extended object track ing using Monte Carlo methods[J]. IEEE Trans on Signal Processing, 2008, 56(2): 825-832.
  • 9Kirubarajan T, Bar-Shalom Y, Blair W D. IMMPDAF for radar management and tracking Benchmark with ECN[J]. IEEE Trans on Aerospace and Electronic Systems, 1998(4) : 1115-1133.
  • 10Morelande M R, Challa S. Maneuvering target tracking in clutter using particle filters [J]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41 (1): 252-270.

共引文献7

同被引文献104

  • 1张鹏,卢广山,王合龙,田青.基于三步搜索法的特征相关目标跟踪算法[J].电光与控制,2004,11(4):38-40. 被引量:10
  • 2何伍福,王国宏,刘杰.海杂波环境中基于混沌的目标检测[J].系统工程与电子技术,2005,27(6):1016-1020. 被引量:6
  • 3ZHOU WenHui,LI Lin,CHEN GuoHai,YU AnXi.Optimality analysis of one-step OOSM filtering algorithms in target tracking[J].Science in China(Series F),2007,50(2):170-187. 被引量:12
  • 4宋清昆,郝敏.一种改进的模糊C均值聚类算法[J].哈尔滨理工大学学报,2007,12(4):8-10. 被引量:26
  • 5Bar-Shalom Y, Li X R. Multitarget-muhisensor tracking: principles and techniques [ M ]. Storrs, CT: YBS Pub- lishing, 1995.
  • 6Bar-Shalom Y, Fortmann T E. Tracking and data associa- tion[M]. San Diego, CA: Academic Press, 1958.
  • 7Mahler R. Random sets: unification and computation for information fusion-A retrospective assessment [ C ]//Pro- ceeds of the 7th International Conference on Information Fusion. Stockholm, Sweden, 2004 : 1-20.
  • 8Mahler R. Multi-target Bayes filtering via first-order multi- target moments[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
  • 9Mahler R. PHD filters of higher order in target number [J ]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4) : 1523-1543.
  • 10Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets [J ]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4) : 1224-1245.

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部