期刊文献+

具有非倍测度的参数型Marcinkiewicz积分交换子估计 被引量:3

Estimates for Commutators of Parameter Marcinkiewicz Integrals with Non-Doubling Measures
下载PDF
导出
摘要 本文证明了由参数型Marcinkiewicz积分Mρ和Lipshitz函数b生成的交换子Mρb的有界性.在M的核函数满足较强的Hrmander条件下,证明了Mρb不仅从Morrey空间Mpq(μ)到RBMO(μ)有界,从Lebesgue空间Ln/β(μ)到空间RBMO(μ)有界,而且从Morrey空间Mpq(μ)到Lipschitz空间Lip(β-np)(μ)有界,这里p=n/β. In this paper, the authors prove the boundedness of the commutator MPq generated by the parameter Marcinkiewicz integral Me with Lipschitz function b. With the assumption that the kernel of M satisfies certain slightly stronger H0rmander-type condition, the authors prove that MPq is hounded from the Morrey space MPq(μ) to the space RBMO ~), from the space Ln/P(μ) to the space RBMO(μ), and from the Morrey space MPq(μ) to the Lipschitz space Lip(β-n/p) (μ) , here p =n/β
作者 周疆 逯光辉
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2014年第5期516-521,共6页 Journal of Henan University:Natural Science
基金 国家自然科学基金资助项目(11261055 11161044) 新疆自然科学基金资助项目(2011211A005 BS120104)
关键词 非倍测度 参数型MARCINKIEWICZ积分 交换子 Lipβ(μ)函数 non doubling measure parameter Marcinkiewicz integral commutator Lipβ(μ) {unction
  • 相关文献

参考文献14

  • 1Deng D, Han Y, Yang D. Besov spaces with non-doubling measure [J]. Transactions of the American Mathematical Society, 2006,358(7):2965-3001.
  • 2Han Y, Yang D. Triebel-Lizorkin spares with non-doubling measures [J]. Studia Mathemztica, 2004,162(2) :105-140.
  • 3Hu G, Meng Y, Yang D. New atmoic characterization of H1 space with non-doubling measures and its applications [J]. Mathematical Proceedings of the Cambrdge Philosophical Society, 2005,138(1):151-171.
  • 4Nazarov F, Treil S, Volberg A. Weak type estimates and Cotlar inequalities for Calderon-Zygmund operators on nonhom- geneous spaces [J]. Internatonal Mathematics Research Notices, 1998(9) :463- 487.
  • 5Nazarov F, Treil S, Volberg A. Accretive system Tb-theorems on nonhomogeneous spaces [J]. Duke Mathematical Jour- nal, 2002,113(2) :259-312.
  • 6Nazarov F, Treil S, Volberg A. The Tb-theorems on non-homogeneous spaces[J]. Acta Mathematical, 2003,190(2) :151 -239.
  • 7Tolsa X. Littlewood-Paley theory and the T(1)theorem with non-doubling measures [J]. Advances in Mathematics, 2001, 164(1) :57-116.
  • 8Yang D, Yang Do. Uni-orm boundedness for approximations of the identiy with nondoubling measures [J]. Journal of Ine- qualities and Applications, vol. 2007, Article ID 19574, 25 pages, 2007.
  • 9Hormander L . Estimates for translation invariant opertors in Lp spaces [J]. Acta Mathematica, 1960,104(1/2) :93-140.
  • 10Stein E M. On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz [J]. Trans Am Math Soe, 1958,88: 430- 466.

同被引文献8

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部