期刊文献+

小麦-黑麦杂种体细胞无性系高配对突变体的细胞学和AFLP分析 被引量:1

Cytological and AFLP Analysis of the Wheat-Rye Somaclonal Variation with Higher Chromosome Pairing Rate
下载PDF
导出
摘要 以小麦-黑麦未经组织培养直接结实杂种及幼胚无性系变异再生杂种为材料,观察再生杂种的花粉母细胞减数分裂中期Ι染色体配对情况,发现杂种幼胚无性系变异再生杂种中存在一些配对频率大幅度提高的突变体,表现在有多个二价体及三价体、四价体.利用原位杂交技术对未经组织培养直接结实杂种及高配对无性系杂种染色体的组成和结构分析,结果显示经过无性系变异提高了W-R、R-R间的联会,表明组织培养对小麦和黑麦染色体配对造成了一定影响;进而利用基因组AFLP技术研究亲本和两种类型的杂种DNA序列上的差异,结果表明各种类型的杂种F1代均发生了广泛的基因组改变,主要表现为小麦、黑麦两亲本片段的缺失,且高配对无性系杂种基因组的变异大于未经组织培养直接结实杂种.本研究为进一步探究高配对变异的分子机理并利用该变异进行染色体重组奠定了基础. Previous cytological analysis of the wheat×rye hybrids revealed a high frequency of bivalents at metaphase I in some somaclonal variation in the embryogenic cell culture. In order to determine the molecular nature of the change, the hybrids non-regenerated from tissue culture and the somaclonal variation with higher number of chromosome pairing were examined by genomic in situ hybridization (GISH) and the amplified fragment length polymorphism (AFLP) technique. It is indicated that somaclonal variation gave rise to pairing configuration of W-R and R-R. Furthermore, the source and type of genomic changes were investigated that extensive genomic changes were observed as early as F1 in all hybrids, and that the major variation was the parents' sequence elimination. Moreover, the change of somaclonal variation with higher number of chromosome pairing was much larger than that of the hybrids non-regenerated from tissue culture. The result suggested that the somaclonal variation could increase the genomic changes. It is the first time to report the cytology and the molecular biology foundation of high frequent pairing variation.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2014年第5期575-581,共7页 Journal of Henan University:Natural Science
基金 国家自然科学基金(NSFC)(No.31271713) 河南省教育厅自然科学基金(No.2011B180003)联合资助
关键词 小麦—黑麦 无性系变异 基因组原位杂交 AFLP wheat-rye somaclonal variation GISH AFLP
  • 相关文献

参考文献4

二级参考文献67

  • 1李立会,董玉琛.在组织培养中属间杂种的体细胞变异研究[J].中国农业科学,1995,28(6):9-19. 被引量:6
  • 2Masterson J. Stomatal size in fossil plants: evidence for polyploidy in the majority of angiosperms. Science, 1994, 264: 421-424.
  • 3Wendel J F. Genome evolution in polyploidy. Plant Mol Biol, 2000, 42: 225-249.
  • 4Guyot R, Keller B. Ancestral genome duplication in rice. Genome, 2004, 47: 610-614.
  • 5Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997, 94: 6809-6814.
  • 6Shoemaker R C, Polzin K, Labate J, Specht J, Brummer E C, Olson T, Young N, Concibido V, Wilcox J, Tamulonis J P, Kochert G, Boerma H R. Genome duplication in soybean (Glycine subgenus soja). Genetics, 1996, 144: 329-338.
  • 7Vision T J, Brown D G, Tanksley S D. The origins of genomic duplications in Arabidopsis. Science, 2000, 290: 2114-2117.
  • 8Arabidopsis genome initiative: analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408: 796-815.
  • 9Song K, Lu P, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc Natl Acad Sci USA, 1995, 92: 7719-7723.
  • 10Ozkan H, Levy A A, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell, 2001, 13: 1735-1747.

共引文献12

同被引文献18

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部