期刊文献+

网络用户对在线图书关联推荐服务接受意愿影响研究——基于用户认知视角 被引量:2

Research on Web User's Willingness of Accepting Books Association Recommended Service——Based on User Cognitive Perspective
下载PDF
导出
摘要 电子商务领域中,面对搜寻图书过程中庞大的产品选择和图书信息,网络用户普遍呈现缺乏图书信息知识的现象。用户由于自身认知水平限制,不知道该选择哪种图书及如何进行选择,这对其搜寻和购买行为造成了困扰。基于TAM模型,以用户认知为研究视角,建立网络用户对在线图书关联推荐服务接受意愿理论模型。通过情景实验的方式收集了395份有效问卷,并通过结构方程进行实证分析。研究结果表明:网络用户对在线图书关联推荐服务的接受意愿与其感知有用性和感知易用性有关,而感知有用性和感知易用性又受到系统因素、个人因素和图书相关因素的影响。 In the field of electronic commerce, it leads to a phenomenon that the widespread lack of books parameter information and knowledge to the network users who face a vast of product selection and book information. Online consumers do not know what kind of books and how to make a choice because of the limited cognitive performance when it comes to the great amount of products and informa-tion; those all have caused problems for their searching and buying behavior. Based on TAM model, the paper selects user cognitive be-havior as research perspective. At the same time, researchers establish a WTA theory model for online goods recommendation service. Through situational experiment researchers collected 395 valid questionnaires, and empirically analyzed them by structural equation. The result shows that there is a relationship between user's willingness of accepting online books association recommended services and per-ceived ease of use; researchers also find the later will be influenced by the system, individual characteristics and the factors related books.
出处 《情报杂志》 CSSCI 北大核心 2014年第8期196-202,共7页 Journal of Intelligence
基金 国家自然科学基金项目"网络购物的供应链结构 机制设计与产品质量诚信激励"(编号:71201012)
关键词 在线图书 关联推荐服务 网络用户 TAM 模型 结构方程 接受意愿 online book association recommended service online users TAM model structural equation willingness to accept
  • 相关文献

参考文献25

  • 1Paul Resniek, Hal R Varian. Recommender Systems [ J ]. Communications of the ACM, 1997,40(3) :56-58.
  • 2BreeseJ S, Hecherman D,Kadie C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering [ J ]. Proc 14th Conf Uncertainty in Artificial Intelligence, 1998 : 43 -52.
  • 3Han J, Kamber M. Data Mining: Concepts and Techniques [M]. Morgan Kaufmann Publishers, 2000.
  • 4Bai Sixue,Dai Xinxi. An Efficiency Apriori Algorithm:P一Ma-trixAlgorithm [ C]. Proceedings of the First International Symposium on Data, Privacy, and E-Commerce, 2007.
  • 5Li Huajing. Personalized Feed Recommendation Service for Social Networks [C]_ Social Computing (SocialCom),2010: 96-103.
  • 6Goldberg D,Nichols D, Oki BM. Using Collaborative Filtering to Weave an Information Tapestry [ J ]. Communication of the ACM, 1992, 35(12): 61-70.
  • 7Karypis G. Evaluation of Item-based top-n Recommendation Algorithms [ C ]. In Proceedings of the Tenth International Conference on Information and Knowledge Management,2001 : 267-274.
  • 8Jhon W,Payne. The Adaptive Decision Maker [M]. NY: Cambridge University Press, 1993.
  • 9Richard Alba. Rethinking Assimilation theory for a New Era of Immigration [J].IMRJ, 1997 , 31(4):826-874.
  • 10BurkeR R. Technology and the Customer Interface: What Consumers Want in the Physical and Virtual Store[ J]. Journal of the Academy of Marketing Science, 2002,30(4) :411-432.

二级参考文献104

共引文献61

同被引文献40

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部