期刊文献+

基于Hadoop MapReduce的分布式数据流聚类算法研究 被引量:5

Research on Distributed Clustering over Data Stream Using Hadoop MapReduce
下载PDF
导出
摘要 随着数据流规模的持续增大,现有基于网格的聚类算法对数据流的聚类效果不好,不能实时发现任意形状的簇,也不能及时删除数据流中的噪声点。文章提出了一种Hadoop平台环境下基于网格密度的分布式数据流聚类算法(PGDC-Stream),利于基于Hadoop的MapReduce框架对数据流进行阶段化的并行聚类分析,实时发现数据流中任意形状的簇,定义检测周期和密度阈值函数并及时删除数据流中的噪声点。算法基于网格密度对数据流初始聚类后,随着新数据的到来,使用基于密度阈值函数的噪声点处理策略,周期性检测和删除噪声点,使用基于Hadoop MapReduce框架的并行分析模型周期性地调整已经生成的簇。实验结果表明,PGDC-Stream对大规模数据流的聚类质量、可伸缩性和实时性都好于CluStream。 With continuous increase in data stream scale, most existing grid-based clustering algorithms are incompetent to find clusters of arbitrary shape in real-time, and the noise points could not be removed timely. To address these issues, this paper proposes PGDC-Stream, a novel grid-based algorithm for clustering data streams using Hadoop MapReduce. The algorithm adopts a parallel cluste- ring model based on Hadoop Mapreduce to find clusters in real-time. Exploiting a new time-based density threshold function and detecting cycle, the proposed algorithm could remove noise points time- ly. Firstly,PGDC-Stream clusters the data stream using grid density, with the new data records continuously arriving, a novel pruning strategy is used to inspect and remove the noise points periodically. Simultaneously, based on the parallel clustering model, the generated clusters are dynamically adjusted to capture the evolution of the data stream. The experimental results show that PGDC-Stream has superior efficiency, and its clustering quality and scalability are better than CluStream.
出处 《信息工程大学学报》 2014年第4期472-478,共7页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61170190) 国家青年基金资助项目(61004115)
关键词 数据挖掘 聚类 数据流聚类 分布式聚类 data mining clustering data stream clustering distributed clustering Hadoop MapReduce
  • 相关文献

参考文献11

  • 1Ren J D,Hu C Z,Ma R Q.HClu Win:An Algorithm for Clustering Heterogene-ous Data Streams over Sliding Windows[J].International Journal of Innovative Computing,Information and Control,2010,6(5):2171-2179.
  • 2Guha S,Mishra N,Motwani R.Clustering data streams[C]//Proceeding(s) of 41st Annual Symposium on Foundations of Computer Science.2000:359-366.
  • 3O' callaghan L,Mishar N,Meyerson A.Streaming data algorithms for high-quality clustering[C]//Proceeding (s) of 18th Int' 1 Conf,Data Engineering.2002:685-704.
  • 4Aggarwali C,Han J,Wang J,et al.A Framework for Clustering Evolving Data Streams[C]//Proc.of the 29th VLDB Conference.2003:81-92.
  • 5Ntoutsi I,Zimek A,Palpanas T,et al.H-P:Density-based projected clustering over high dimensional data streams[C]//Proc.of SDM 2012.2012:987-998.
  • 6Chen Y,Tu L.Density-Based Clustering for Real-Time Stream Data[C]//Proc.of the Acm Sigkdd 2007 Conference.2007:133-142.
  • 7Kyuseok Shim.MapReduce Algorithms for Big Data Analysis[C]//Proceedings of the VLDB Endowment.2012:2016-2017.
  • 8向小军,高阳,商琳,杨育彬.基于Hadoop平台的海量文本分类的并行化[J].计算机科学,2011,38(10):184-188. 被引量:35
  • 9Robson L F,Caetano Traina J R,Agma J M.Clustering Very Large Multi-dimensional Datasets with MapReduce[C]//Proceedings of the 17th ACM Sigkdd Conference on Knowledge Discovery and Data Mining.2011:690-698.
  • 10Alina Ene,Sungjin Im,Benjamin Moseley.Fast clustering using MapReduce[C]//Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining.2011:681-689.

二级参考文献25

  • 1高洁,吉根林.文本分类技术研究[J].计算机应用研究,2004,21(7):28-30. 被引量:36
  • 2倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15
  • 3Sebastiani F. Text Categorization[Z]. Encyclopedia of Database Technologies and Applications. 2005..683-687.
  • 4Joachims T. A Probabilistic Analysis of the Rocchio Algorithm with TF1DF for Text Categorization[C]//Proceedings of the Fourteenth International Conference on Machine Learning. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1997.
  • 5Yang Y. An Evaluation of Statistical Approaches to Text Categorization[J]. Journal of Information Retrieval, 1999, 1 (1/2) :67-88.
  • 6Rocchio J J Jr. Relevance Feedback in Information Retrieval [M]. Salton G, ed. The SMART Retrieval System: Experiments in Automatic Document Processing. Prentice-Hall, Inc. , Englewood Cliffs, New Jersey, 1971 : 313-323.
  • 7Tzeras K, Hartmann S. Automatic Indexing Based on Bayesian Inference Networks[C]//Proc. 16th ACM Int. SIGIR Conference. 1993: 22-34.
  • 8Masand B, Lino G, Waltz D. Classifying News Stories Using Memory Based Reasoning[C]//15th ACM SIGIR Conference. 1992:59-65.
  • 9Apte C, Damerau F, Weiss S. Automated Learning of Decision Rules for Text Categorization[J]. ACM Trans. on Information Systems, 1994,12(3) : 233-251.
  • 10Joachims T. Text Categorization with Support Vector Machines:Learning with Many Relevant Features [C]//Proc. 10th European Conference on Machine Learning (ECML). 1998:137-142.

共引文献86

同被引文献78

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部