期刊文献+

基于神经网络算法土颗粒大小分布的参数模型

Parameter Model for Soil Particle Size Distribution Based on Neural Network Algorithm
下载PDF
导出
摘要 公路路基用土都为非饱和土,土水特征曲线定义了非饱和土中吸力与含水率之间的关系。采用Arya-Paris模型可根据土颗粒大小的分布确定非饱和土的土水特征曲线,因此获得土颗粒大小分布的参数模型显得极为重要。提出采用神经网络算法,根据土颗粒分析结果建立土颗粒大小分布的参数模型。工程实例表明,此方法能够满足实际工程精度要求,并具有一定的工程适用性。 The soil used for highway subgrade is unsaturated. The soil-water characteristic curve aennes me relationship between suction and water content of this unsaturated soil, which is confirmed according to the soil particle size distribution with Arya-Paris model. Thus, the obtainment of its parameter model is extremely important. This paper presents a neural network algorithm to establish parameter model of soil particle size distribution by analyzing the result of soil particle test. The engineering examples show that this method can meet the actual accuracy requirements of engineering and has certain engineering applicability.
出处 《路基工程》 2014年第4期51-54,共4页 Subgrade Engineering
关键词 路基工程 土水特征曲线 土颗粒分布 参数模型 神经网络算法 subgrade engineering soil-water characteristic curve soil particle size distribution parametermodel neural network algorithm
  • 相关文献

参考文献15

  • 1刘建立,徐绍辉,刘慧,郭飞.参数模型在壤土类土壤颗粒大小分布中的应用[J].土壤学报,2004,41(3):375-379. 被引量:11
  • 2Zhuang J, Yan J, MiyazakiT. Est imating wat er retention characteristic from soil part icle-size dist ribut ion using a non-similar media concept [ J ]. Soil Science, 2001, 166:308 -21.
  • 3Hwang S I, Lee K P, Lee D S, et al. Models for estimating soil particle - size distribut ions [ J]. Soil Science Society of America Journal, 2002, 66 : 1143 - 1150.
  • 4Buchan G D. Applicabil ity of the simple lognormal model to particle sizedistribution in soils [ J]. Soil Science, 1989, 147:155 -161.
  • 5吕圣桥.黄河三角洲滩地土壤颗粒分形特征及其与土壤性质的相关性研究[D].济南:山东农业大学,2012.
  • 6Tyler S W, Wheatcraft S W. Fractal processes in soil water relation [ J ]. Water Resour Res, 1990, 26 (5) : 1047 -1054.
  • 7Rieu M, Sposito G. Fracta fragmentation soil porosity and soil water properties I Theory [J]. Soil Science Society of American Journal. 1991, 55: 1231-1238.
  • 8Pachepsky Ya A, Sncherbakov R A, Korsunskaya L P. Scaling of soil water retention using a fractal model [J]. Soil Sci, 1995, 159 (2) : 99 -104.
  • 9Arya L M, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle - size distribution and bulk density data [ J ]. Soil Science Society of America Journal, 1981, 45 : 1023 - 1030.
  • 10赵丽晓.土水特征曲线的预测模型研究[D].南京:河海大学,2007.

二级参考文献49

  • 1张崇玉,李生秀.土壤颗粒组成与固定态铵之间的关系[J].土壤学报,2004,41(4):649-654. 被引量:28
  • 2刘金龙,栾茂田,赵少飞,袁凡凡,王吉利.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348. 被引量:309
  • 3徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1993..
  • 4徐士良.FORTRAN常用算法程序集[M].北京:清华大学出版社,1993..
  • 5Sumner M E. Handbook of Soil Science[M]. Boca Baton: CRC Press, 1999.
  • 6van Genuchten M rill, Leij F J. On estimating the hydraulic properties of unsaturated soils[A]. In: van Genuchten M Th, et al. (ed.) Proc Int Worksh. on Indirect Methods of Estimating the Hydraulic Properties of Unsaturated Soils[C]. University of California, Riverside, CA,1992, 1 - 14.
  • 7Atya L M, Paris J F. A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45:1 023- 1 030.
  • 8Haverkamp R, Parlange J Y. Predicting the water retention curve from particle-size distribution: Sandy soils without organic matter[J]. Soil.
  • 9Haverkamp R, Parlange J Y. Predicting the water retention curve from particle-size distribution: Sandy soils without organic matter[J]. Soil Science, 1986, 142:32S-399.
  • 10Tyler S W, Wheatcraft S W. Application of fractal mathematics to soll water retention estimation[J]. Soil Science Society of America Journal,1989, 53:987-996.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部