期刊文献+

非对称补偿粒子滤波可逆隐藏数据访问算法

Reversible Hidden Data Access Algorithm Based on Non-symmetrical Compensation Particle Filter
下载PDF
导出
摘要 针对级联数据库中可逆隐藏数据定位不准,访问恢复困难的问题,提出一种基于非对称补偿粒子滤波的可逆隐藏数据访问算法,实现对数据库中可逆隐藏数据准确访问。算法使用非对称粒子滤波对数据库中可逆隐藏数据的目标位置和访问信道衰减参数进行同时估计,提高可逆隐藏数据定位精度。设计非对称补偿滤波器,抑制数据访问中相干数据干扰,采用迭代方式对隐藏数据访问进程进行更新。最后采用取对数能量求倒谱的方法对数据进行恢复处理,实现对可逆隐藏数据的精准定位访问。仿真实验表明,采用该算法对大型级联数据库进行访问,能准确定位可逆隐藏数据,抗干扰能力强,无损可逆性好,数据库访问识别率和鲁棒性均有明显提高。 In the cascade database, the reversible hidden data is hard to be located and accessed. An improved reversible hidden data access algorithm was proposed based on non symmetrical compensation particle filter for database accessing. The algorithm used asymmetric particle filter for simultaneous estimation of reversible data hiding in the database of the tar-get position and access channel attenuation parameters. The positioning accuracy of reversible data hiding was improved. Asymmetric compensation filter was designed for coherent data interference suppression. The iterative method was used for hiding data access process and data update. Data recovery processing was implemented by computing the logarithmic ener-gy and reversal spectrum. The precise positioning of reversible data access was obtained. Simulation results show that new method can locate the reversible hiding data accurately in access with strong anti-interference ability. The recognition rate and robustness are improved.
出处 《科技通报》 北大核心 2014年第8期65-67,共3页 Bulletin of Science and Technology
关键词 粒子滤波 隐藏数据 非对称补偿 数据库 particle filter hiding data asymmetric compensation database
  • 相关文献

参考文献5

二级参考文献41

  • 1吴迪,张亚平,郭禾.一种基于粗糙集理论和BP神经网络的入侵检测新方法[J].计算机研究与发展,2006,43(z2):437-441. 被引量:7
  • 2Sad S, Mosmann TR. Single IL-2-Secreting Precursor CD4 T Cell Can Develop in to Either Th1 or Th2 Cytokine Secretion Phenotype.J Immunol, 1994,153:3514 - 3519
  • 3Chang KCC, Cho J. Accessing the Web: From search to integration. In: Proc. of 2006 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2006). Chicago: ACM Press, 2006. 804-805.
  • 4Cope J, Craswell N, Hawking D. Automated discovery of search interfaces on the Web. In: Proc. of the 14th Australasian Database Conf. (ADC 2003). Adelaide: Australian Computer Society Press, 2003. 181-189.
  • 5Kabra G, Li C, Chang KCC. Query routing: Finding ways in the maze of the deep Web. In: Proc. of the Int'l Workshop on Challenges in Web Information Retrieval and Integration (WIR12005). Tokyo: IEEE Computer Society Press, 2005. 64-73.
  • 6He H, Meng W, Yu CT, Wu Z. WISE-Integrator: An automatic integrator of Web search interfaces for e-commerce. In: Proc. of the 29th Int'l Conf. on Very Large Data Bases (VLDB 2003). Berlin: ACM Press, 2003.357-368.
  • 7Wu W, Doan A, Yu CT. WebIQ: Learning from the Web to match deep-Web query interfaces. In: Proc. of the 22rid Int'l Conf. on Data Engineering (ICDE 2006). Atlanta: IEEE Computer Society Press, 2006.44.
  • 8Zhai Y, Liu B. Web data extraction based on partial tree alignment. In: Proc. of the 14th Int'l World Wide Web Conf. (WWW 2005). Chiba: ACM Press, 2005.76-85.
  • 9Zhao H, Meng W, Wu Z, Raghavan V, Yu CT. Fully automatic wrapper generation for search engines. In: Proc. of the 14th Int'l World Wide Web Conf. (WWW 2005). Chiba: ACM Press, 2005, 66-75.
  • 10Raghavan S, Garcia-Molina H, Crawling the hidden Web. In: Proc. of the 27th Int'l Conf. on Very Large Data Bases (VLDB 2001). Rome: ACM Press, 2001. 129-138.

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部