期刊文献+

具有周期间断振荡系数抛物型方程的多尺度有限元法

Multiscale Finite Element Method for Parabolic Equations with Rapidly Oscillating Periodic Discontinuous Coefficients
下载PDF
导出
摘要 针对一类具有周期间断振荡系数抛物型方程的初边值问题,提出了多尺度渐进展开式,在此基础上,发展了多尺度有限元方法,并给出相关的收敛性分析.数值计算结果表明该算法是有效的. The initial-boundary value problems of parabolic equations with rapidly oscillating pe- riodic discontinuous coefficients are considered and the multiscale asymptotic method is developed in this paper. From this, the multiscale finite element method and the convergence analysis are derived. Numerical simulations are then carried out to validate the above theoretical results.
作者 费强 翟方曼
出处 《合肥学院学报(自然科学版)》 2014年第3期12-16,共5页 Journal of Hefei University :Natural Sciences
关键词 抛物型方程 周期间断振荡系数 多尺度渐进展开式 有限元法 parabolic equation rapidly oscillating periodic discontinuous coefficients multiscaleasymptotic expansion finite element method
  • 相关文献

参考文献5

  • 1Bensoussan A, Lions J L, Papanicolaou G. Asymptotic Analysis of Periodic Structures[M]. Amsterdan: North-Holland Publishing Company, 1978: 233-298.
  • 2Brahim-Otsmane, Francfort, Murat. Correctors for the Homogenization of the Wave and Heat Equalions[J]. Math Pur- eset Appl, 1992,71 : 197-231.
  • 3Allegretto W.Cao L Q, Lin Y P, Multiscale Asymptotic Expansion for Second-order Parabolic Equalions with Rapidly Oscillating Coefficients[J]. Discrete and Continuous Dynamical Systems, 2008,20 (3) : 543-576.
  • 4Cao L Q,Cui J Z, Luo J L. Muhiscale Asymptotic Expansion and a Post-processing Algorithm for Second-order Elliptic Problems with Highly Oscillatory Coefficients over General Convex Domains [J]. Comp and Appl Math, 2003, 157: 1-29.
  • 5Cao L Q, Cui J Z. Asymptotic Expansions and Numerical Algorithms of Eigenvalues And Eigenfunctions of the Dirichlet Problem for Second-order Elliptic Equations in Perforated domains[J]. Numer Math,2004,96:.525-581.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部