期刊文献+

支持向量机算法在MOOC课程答疑系统中的研究

Study on MOOC Intelligent Answering Using Support Vector Machine
下载PDF
导出
摘要 随着互联网技术和近期MOOC课程的发展,智能答疑系统也受到了更多的关注,应用它能够及时给学生提供学生疑惑的问题答案.智能答疑系统通常包括问句理解、信息检索、答案抽取和选择三个主要部分,且问句分类是问句理解的关键,因为它的准确性将直接影响到最后答案的准确性.以高校计算机基础课程为实际背景,在已有基于支持向量机算法基础上,对该方法进行了改进,并通过训练集和测试集进行了验证.从实验结果看,该方法在高校计算机基础智能答疑系统中有比较好的应用效果. With the development of Internet technology and the MOOC Courses, the intelligent answering also has drown more attention, because it can solve user unsure questions timely. Intelligent answering system typically includes comprehension questions, information retrieval and answer extraction and selection. Question classification is a part of comprehension questions, which directly affects the accuracy of the final answers. It is verified by the training and test sets using the improving method which is based on support vector machine. The results show this method get high classification accuracy on intelligent answering.
作者 岳群琴 景红
出处 《计算机系统应用》 2014年第9期173-176,共4页 Computer Systems & Applications
基金 中央高校基本科研基金(A092050205130425)
关键词 MOOC 智能答疑 问句理解 问句分类 支持向量机 MOOC intelligent answering comprehension questions question classification support vector machine
  • 相关文献

参考文献6

二级参考文献31

  • 1李荣陆,王建会,陈晓云,陶晓鹏,胡运发.使用最大熵模型进行中文文本分类[J].计算机研究与发展,2005,42(1):94-101. 被引量:96
  • 2张宇,刘挺,文勖.基于改进贝叶斯模型的问题分类[J].中文信息学报,2005,19(2):100-105. 被引量:47
  • 3文勖,张宇,刘挺,马金山.基于句法结构分析的中文问题分类[J].中文信息学报,2006,20(2):33-39. 被引量:82
  • 4孙景广,蔡东风,吕德新,董燕举.基于知网的中文问题自动分类[J].中文信息学报,2007,21(1):90-95. 被引量:41
  • 5VladimirN Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.1-125.
  • 6VOORHEES E M.Overview of the TREC 2003 question answering track[C] //Proc of the 12th Text Retrieval Conference.2004:54-68.
  • 7MAGNINI B,NEGRI M,PREVETE R,et al.Mining knowledge from repeated co-occurrences:DIOGENE at TREC 2002[C] //Proc of the 11th Text Retrieval Conference.2002.
  • 8HAN K S,CHUNG H J,KIM S B,et al.Korea University question answering system at TREC 2004[C] //Proc of the 10th Text Retrieval Conference.2004.
  • 9YANG Hui,CHUA T S,WANG Shu-guang,et al.Structured use of external knowledge for event-based open domain question answering[C] //Proc of SIGIR'03.2003:33-40.
  • 10ZHANG D,LEE W S.Question classification using support vector machines[C] //Proc of the 26th Annual International ACM SIGR Conference on Research and Development in Information Retrieval.New York:ACM Press,2003:26-32.

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部