期刊文献+

基于流量特征的用户互联网访问类型识别 被引量:2

Traffic Features Based Categories Identification on Users' Network Behavior
下载PDF
导出
摘要 近年来,对互联网用户在网络上的行为分析研究吸引了广泛的兴趣,分析的结果对网络运营商和普通用户都有重要的意义.研究用户在网络上的访问行为的类型识别问题,分析了一个由22万个网络数据包组成的数据集,从中提取统计特征,设计用户网络访问的类型识别算法,实验结果显示本文算法具有相当高的识别准确率. In recent years, the research on analyzing the users’ network behavior has attracted much attention. In this paper, we study the problem of identifying users’ network behavior categories. The research is based on a dataset that consists of 220 thousand network packets, with which we extract the statistical features needed for the identifications. We propose the identifying algorithm, and we also apply the algorithm to make categories identification on the network dataset. The results show the presented work can achieve very high accuracy.
出处 《计算机系统应用》 2014年第9期177-181,共5页 Computer Systems & Applications
基金 国家高技术研究发展计划(863)(2012AA12A203)
关键词 网络流量 类型识别 特征选择 决策树 network traffic category identification feature selection decision tree
  • 相关文献

参考文献17

  • 1Nguyen TTT, Armitage Ca A survey of techniques for intemet waffic classification using machine learning. IEEE Communications Surveys & Tutorials, 2008, 10(4): 56-76.
  • 2刘颖秋,李巍,李云春.网络流量分类与应用识别的研究[J].计算机应用研究,2008,25(5):1492-1495. 被引量:21
  • 3彭芸,刘琼.Internet流分类方法的比较研究[J].计算机科学,2007,34(8):58-61. 被引量:17
  • 4Moore A, Papagiannaki K. Toward the accurate identification of network applications. Proc. of Passive and Active Measurement Workshop (PAM2005). Boston (USA). 2005.
  • 5Sun AX, Lim EP, Ng WK. Web Classification Using Support Vector Machines. Proc. ACM Workshop on Web Information and Data Management (WIDM'02) with ACM CIKM. Virginia, USA, Nov. 2002. 96-99.
  • 6Zander S, Nguyenh, Armitage G Automated traffic classification and application identification using machine learning. Proc. of the 30th IEEE Conference on Local Computer Networks Anniversary. Washington DC. IEEE Computer Society. 2005. 250-257.
  • 7Martin S, Sewani A, Nelson B, Chen K. Analyzing behavioral features for email classification. Email and Anti-Sparn, 2005.
  • 8Moore A, Zuev D, Intemet traffic classification using Bayesian analysis techniques. Proc. of SIGMETRICS'05. New York. ACM Press. 2005. 50-60.
  • 9Fraleigh C, Moon S, Lyles B, et al. Packet-level traffic measurements from the sprint IP backbone. IEEE Trans. on Networks, 2003, 17(6): 6-16.
  • 10Barakat C, Thiran P, Iannaccone G, et al. Modeling intemet backbone traffic at the flow level. IEEE Trans. on Signal Processing (Special Issue on Networking), 2003,51(8): 2111 -2124.

二级参考文献41

  • 1Karagiannis T,Papagiannaki D,Faloutsos M.BLINC:Multilevel Traffic Classification in the Dark[C].ACM SIGCOMM,Philadelphia,PA,USA,August 2005
  • 2Plissonneau L,Costeux J L,Brown P.Analysis of Peer-to-Peer Traffic on ADSL[J].Passive and Active Network Measurement,2005,3431:69-82
  • 3Gerber A,Houle J,Nguyen H,et al.P2P The Gorilla in the Cable[C].National Cable & Telecommunications Association,National Show,Chicago,IL,June 2003
  • 4Saroiu S,Gummadi K P,Dunn R.J,et al.An Analysis of Internet Content Delivery Systems[C].In:Proceedings of the 5th Symposium on Operating Systems Design and Implementation,2002
  • 5Sen S,Wang J.Analyzing peer-to-peer traffic across large networks[C].In:Proceedings of ACM SIGCOMM Internet Measurement Workshop,Marseilles,France,November 2002
  • 6Bleul H,Rathgeb EP.A Simple,Efficient and Flexible Approach to Measure Multi-protocol Peer-to-Peer Traffic[J].Networking-ICN 2005,2005,3421:606-616
  • 7Sen S,Spatscheck O,Wang D.Accurate,Scalable In-network Identification of P2P Traffic Using Application Signatures[C].In:Proceedings of the 13th international conference on World Wide Web,New York,2004
  • 8Zander S,Nguyen T,Armitage G.Automated Traffic Classification and Application Identification using Machine Learning[C].In:Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary,2005
  • 9NetMate[EB/OL](http://sourceforge.net/projects/netmate-meter/)(August 2005)
  • 10Zander S,Nguyen T,Armitage G.Self-learning IP Traffic Classification Based on Statistical Flow Characteristics[J].Passive and Active Networking Measurement,2005,3431:325-328

共引文献34

同被引文献6

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部