期刊文献+

关于平面解析系统的拟齐次分解

On the Quasi-Homogeneous Decomposition of Planar Analytic System
下载PDF
导出
摘要 通过解析函数的拟齐次分解与牛顿图,研究了平面解析系统的拟齐次分解问题。给出了拟齐次向量场空间的维数及平面解析系统的拟齐次分解定理,并用实例给出平面多项式系统拟齐次分解的具体算法。这些结果推广了平面解析系统的拟齐次分解中的有关结论,对研究平面高次奇点性态具有参考价值。 In this paper, the quasi-homogeneous decomposition of planar analytic system is studied through the quasi-homogeneous decomposition of the analytic function and Newton diagram. The dimension of the quasi-homogeneous vector field space and quasi-homogeneous decomposition theorem of the planar analytic system are given. Besides, the specific algorithm of quasi-homogeneous decomposition of planar polynomial system is given with examples. These results generalize relevant conclusions in associating references, and are helpful to study the qualitative properties of quasi-homogeneous decomposition of pla- nar polynomial system and have reference value for studying higher-order singular point.
出处 《浙江理工大学学报(自然科学版)》 2014年第5期546-549,564,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(10871181 11101370)
关键词 拟齐次多项式 牛顿图 拟齐次多项式向量场 拟齐次分解 quasi-homogeneous polynomial Newton diagram quasi-homogeneous polynomial vector field quasi-homogeneous decomposition
  • 相关文献

参考文献10

  • 1Andronov A A, Leontovich E A, Gordon I I, et al. Qualitative Theory of Second-Order Dynamic Systems [M]. Jerusalem.. Israel Program for Scientific Transla- tions, 1973.
  • 2张芷芬.微分方程定性理论[M].北京:科学出版社,1986.3-60.
  • 3Dumortier F, Llibre J, Artes J C. Qualitative Theory of Planar Differential Systems[M]. Berlin.. Springer-Ver- lag, 2006.
  • 4Algaba A, Freire E, Gamero E, et al. Monodromy, center-focus and integrability problems for quasi-homo- geneous polynomial systems[J]. Nonlinear Analysis, 2010, 71.. 1726-1736.
  • 5Algaba A, Garcia C, Reyes M. Characterization of a monodromic singular point of a planar vector field[J]. Nonlinear Analysis, 2011, 74(3/4).. 5402-5414.
  • 6Dumortier F. Singularities of vector fields in the plane [J]. Journal of Differential Equations, 1977, 23: 53- 106.
  • 7Algaba A, Fuentes N, Garcia C. Centers of quasi-hom- ogeneous polynomial planar systems [J]. Nonlinear A- nalysis: Real World Applications, 2012, 131 419-431.
  • 8杜飞飞,黄土森.牛顿图的性质与拟齐次多项式系统的中心问题[J].浙江理工大学学报(自然科学版),2013,30(1):101-105. 被引量:1
  • 9Gareia B, Jaume Llibre J, Rio J S P. Planar quasi-homo- geneous polynomial differential systems and their inte- grability[J]. Journal of Differential Equations, 2013, 255.. 3185-3204.
  • 10Pelletier M. 6clatements quasi homogeneous[J]. Ann Fac Sci Toulouse, 1995, 4.. 879-937.

二级参考文献8

  • 1陈兰荪 王明淑.二次系统极限环的相对位置与个数.数学学报,1979,22(6):751-758.
  • 2Algaba A,Garcia C,Reyes M. Characterization of amonodromic singular point of a planar vector field[J].Nonlinear Analysis, 2011,74(3/4) : 5402-5414.
  • 3Dumortier F,Llibre J, Artes J. Qualitative Theory ofPlanar Differential Systems [M]. Berlin: Springer,2006.
  • 4Berezovskaya F S,Medvedeva N B. The asymptotics ofthe return map of a singular point with fixed Newton di-agram[J]. Journal of Mathematical Sciences, 1991,60(6): 1765-1781.
  • 5Dumortier F. Singularities of vector fields in the plane[J]. J Differ Equ, 1977,23: 53-106.
  • 6Algaba A, Freire E,Gamero E,et al. Monodromy,center-focus and integrability problems for quasi-homo-geneous polynomial systems [J]. Nonlinear Analysis?2010, 72(3/4): 1726-1736.
  • 7Algaba A, Freire E, Garcia C. Center of quasi-homoge-neous polynomial planar systems[J]. Nonlinear Analy-sis: Real World Applications, 2012,13 : 419-431.
  • 8Sansone G, Conti R. Nonlinear Differential Equations[M]. New York: Pergamon Press, 1964.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部