期刊文献+

复模糊微分方程的初始值问题

Initial Value Problem of Complex Fuzzy Differential Equations
下载PDF
导出
摘要 复模糊微分方程的初始值问题是近年来研究的热点问题。首先证明了复模糊域上的牛顿-莱布尼茨公式,并建立了微分和积分之间的关系,然后定义了复模糊微分方程的初始值问题,最后给出了基于经典的不动点定理和基于Zadeh在复数域上的扩展原理两种初始值问题存在的结论。然后在此基础上对初始值进行求解。 The initial value problem for complex fuzzy equations is a research hotspot in recent years. We first prove Newton-Leibniz Formula on the complex fuzzy domian and establish the relationship between differential and integral. Then, we define initial value problem of fuzzy complex equations and finally give the conclusion that the twp initial values based on classical fixed point principle and Zadeh's extension principle in complex fuzzy domain have problems. Then, on this basis, we solve the initial value.
出处 《浙江理工大学学报(自然科学版)》 2014年第5期550-554,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金(61210004)
关键词 复模糊微分方程 初始值问题 牛顿-莱布尼茨公式 Zadeh扩展原理 complex fuzzy differential equation initial value problem Newton-Leibniz formula Zaden's extension principle
  • 相关文献

参考文献20

  • 1Gilboa G, Zeevi Y Y, Sochen N A. Complex Difusion Processes for Image Filtering [M]// Scale-Space and Morphology in Computer Vision. Springer Berlin Hei- delberg, 2001: 299-307.
  • 2Takac P, Berg L, Engel W, et ai. Dynamics on the at- tractor for the complex Ginzburg-Landau equation[J].Rostock Math Kollop, 1995, 49.. 163-184.
  • 3Buckley J J. Fuzzy complex analysis II: integration[J]. Fuzzy Sets and Systems, 1992, 49(2) : 171-179.
  • 4Buckley J J, Qu Y. Fuzzy complex analysis I: differenti- ation[J]. Fuzzy Sets and Systems, 1991, 41(3): 269- 284.
  • 5Oberguggenberger M. Fuzzy and weak solutions to dif- ferential equations[C]//Proceedings of the Tenth Inter- national Conference IPMU. 2004: 517-524.
  • 6Oberguggenberger M, Pittschmann S. Differential equa- tions with fuzzy parameters[J]. Mathematical and Com- puter Modelling of Dynamical Systems, 1999, 5 (3). 181-202.
  • 7Seikkala S. On the fuzzy initial value problem[J]. Fuzzy Sets and Systems, 1987, 24(3): 319-330.
  • 8Song S, Wu C. Existence and uniqueness of solutions to Cauchy problem of fuzzy differential equations[J]. Fuzz- y Sets and Systems, 2000, 110(1).. 55-67.
  • 9via M, Friedman M, Kandel A. Numerical solutions of fuzzy differential equations[J]. Fuzzy Sets and Systems, 1999, 105(1).. 133-138.
  • 10Nieto J J. The Cauchy problem for continuous fuzzy differential equations[J]. Fuzzy Sets and Systems, 1999, 102(2): 259-262.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部