期刊文献+

稳态Poisson-Nernst-Planck方程的面向目标误差估计

Goal-oriented error estimation of steady Poissson-Nernst-Planck equations
下载PDF
导出
摘要 为了运用自适应有限元方法研究Poisson-Nernst-Planck(PNP)方程中关于扩散分子的反应率,采用PNP方程对偶问题解的方法,建立面向目标的后验误差估计子并给出具体的证明。结果表明,该误差估计子是有效的。 In order to study the reactive rate of diffused biomolecular in the Poisson-Nernst-Planck(PNP)equations,the dual problem solution of PNP equations is used to construct the goal-oriented error estimator and the detail prove is given.The results show that the posteriori error estimator is effective.
作者 郭苗苗 阳莺
出处 《桂林电子科技大学学报》 2014年第4期325-329,共5页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11161014 11001062) 广西自然科学基金(2012GXNSFBA053006)
关键词 Poisson-Nernst-Planck方程 面向目标 对偶问题 误差估计 Poisson-Nernst-Planck equations goal-oriented dual problem error estimation
  • 相关文献

参考文献10

  • 1l.u B, Hoist M J, McCammon A, et al. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I : finite element solutions[J]. Journal of Computational Physics, 2010,229 : 6979-6994.
  • 2Prudhomme S,Oden J T. On goal-oriented error estimation for elliptic problems: application to the control of pointwise er- rors[J]. Computer Methods in Applied Mechanics and Engineering,1999,176:313-331.
  • 3Oden J T, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method[J]. Computers and Mathematics with Applications,2001,41:735-756.
  • 4Aksoylu B, Stephen D B, Eric C C, et al. Goal-oriented adaptivity and multilevel preconditioning for the Poisson-Boltzmann e- quation[J]. Journal of Scientific Computing, 2012,52 ( 1 ) : 202-225.
  • 5Gr/itseh T.Bathe K J. Goal-oriented error estimation in the analysis of fluid flows with structural interaetions[J]. Computer Methods in Applied Mechanics and Engineering, 2006,195 : 5673-5684.
  • 6Adams R A. Sobolev Spaces[M]. New York:Academic Press, 1975:23-29.
  • 7陆金甫 关治.偏微分方程数值解法[M].北京:清华大学出版社,1985.145-209.
  • 8Xie Y,Cheng J, Lu B, et al. Parallel adaptive finite element algorithms for solving the coupled electro-diffusion equations[J]. Molecular Based Mathematical Biology,2013,1 :90-108.
  • 9Ying Yang,Benzhuo Lu.An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations[J].Advances in Applied Mathematics and Mechanics,2013,5(1):113-130. 被引量:4
  • 10Picasso M. Adaptive finite elements for a linear parabolic problem[J]. Computer Methods in Applied Mechanics and Engi- neering. 1998,167 : 223-237.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部