期刊文献+

基于DCT域内拉普拉斯值排序的人脸识别方法

Face recognition in DCT domain with Laplacian score ranking
下载PDF
导出
摘要 基于DCT域内的人脸识别方法的关键是如何选择有效的DCT系数,提出了一种基于DCT域内拉普拉斯值排序的人脸识别方法。首先将图像划分为若干个大小相同的子块,对每一个子块进行DCT变换,得到分块DCT系数,然后利用拉普拉斯值作为局部保持能力判据选择那些能够很好保持样本流形结构的分块DCT系数,最后对选定的DCT系数执行LPP算法提取识别特征,在ORL和Yale人脸数据库上的实验结果证明了该方法的有效性。 The key of face recognition in DCT domain is how to select effective DCT coefficient.For this purpose,a method for face recognition in DCT domain with Laplacian Score ranking is proposed.Firstly,the image is divided into several blocks with the same size.For each block,DCT is used to obtain block DCT coefficient.Then effective block DCT coefficient is selected according to locality preserving power criterion with Laplacian Score.Ultimately,LPP is performed on the selected block DCT coefficients to extract recognition features.The experiments on ORL and Yale face database shows that the improved method is effective.
出处 《计算机工程与应用》 CSCD 2014年第16期1-6,共6页 Computer Engineering and Applications
基金 河南省教育厅科学技术研究重点项目(No.12B520021)
关键词 人脸识别 分块离散余弦变换 局部保持投影 拉普拉斯值 face recognition block DCT locality preserving projection Laplacian score
  • 相关文献

参考文献15

  • 1Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3 ( 1 ) : 72-86.
  • 2Martinez A M,Kak A C.PCA versus LDA[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2001,23 (2) : 228-233.
  • 3Belkin M, Niyogi P.Laplacian eigenmaps for dimension- ality reduction and data representation[J].Neural Compu- tation, 2003,15(6) : 1373-1396.
  • 4He XF, Yan SC, Hu YX, et al.Face recognition using Laplacianfaces[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(3) :328-340.
  • 5Bajwa U I, Taj I A, Bhatti Z E.A comprehensive com- parative performance analysis of Laplacianfaces and Eigenfaces for face recognition[J].Imaging Science Journal, 2011,59(1):32-40.
  • 6Feng G Y, Hu D W, Zhou Z T.A direct locality preserving projections (DLPP) algorithm for image recognition[J]. Neural Processing Letters, 2008,27 ( 3 ) : 247-255.
  • 7Yu W W,Teng X L,Liu C Q.Face recognition using discriminant locality preserving projections[J].Image and Vision Computing, 2006,24( 3 ) : 239-248.
  • 8Zhu L, Zhu S A.Face recognition based on orthogonal discriminant locality preserving projections[J].Neurocom- puting,2007,70(7) : 1543-1546.
  • 9Cai D,He X F,Zhou K,et al.Locality sensitive discrimi- nant analysis[C]//International Joint Conference on Artifi- cial Intelligence, Hyderabad, India, 2007 : 708-713.
  • 10Ziad M, Martin D.Face recognition using the discrete cosine transforms[J].International Journal of Computer Vision,2001,43(3) : 167-188.

二级参考文献10

  • 1谭璐.高维数据集的结构[D].长沙:国防科技大学,2005.
  • 2STONE C J.Optimal global rates of convergence for nonparametric regression[J].Annals of Statistics,1982,10(4):1040-1053.
  • 3CHRISTOPHER J C.Geometric Methods for Feature Extraction and Dimensional Reduction:A Guided Tour.Microsoft Research.
  • 4FRIEDMAN J H,TUKEY J W.A projection pursuit algorithm for exploratory data analysis[J].IEEE Transactions on Computers,1974,c-23(9):881-890.
  • 5RAO C R.Linear Statistical Inference and Its Applications[M].Second ed.[s.l.]:Wiley Interscience,2002.
  • 6HYV(A)RINEN A,KARHUNEN J,OJA E.Independent Component Analysis[M].[s.l.]:Wiley,2001.
  • 7ZHU M,MARTNEZ A M.Optimal Subclass Discovery for Discriminant Analysis[C]//Proc IEEE Workshop Learning in Computer Vision and Pattern Recognition,2004.
  • 8ROWELS S T,SAUL K.Nonlinear dimensionality reduction by locally,linear embedding[J].Science,290:2323-2326.
  • 9KAILATH T.Modern Signal Processing[M].[s.l.]:Springer Verlag,1985.
  • 10EGECIOGLU (O).Dimensionality Reduction and Similarity Computation by Inner-Product Approximations[J].IEEE Transactions on Knowledge and Data Engineering,2004;16(6).

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部