期刊文献+

基于序列输入的神经网络模型算法及应用 被引量:1

Algorithm and application of sequence input-based neural network model
下载PDF
导出
摘要 为提高神经网络的逼近能力,提出一种基于序列输入的神经网络模型及算法。模型隐层为序列神经元,输出层为普通神经元。输入为多维离散序列,输出为普通实值向量。先将各维离散输入序列值按序逐点加权映射,再将这些映射结果加权聚合之后映射为隐层序列神经元的输出,最后计算网络输出。采用Levenberg-Marquardt算法设计了该模型学习算法。仿真结果表明,当输入节点和序列长度比较接近时,模型的逼近能力明显优于普通神经网络。 To enhance the approximation capability of neural networks, a sequence input-based neural networks model, whose input of each dimension is a discrete sequence, is proposed. This model concludes three layers, in which the hidden layer consists of sequence neurons, and the output layer consists of common neurons. The inputs are multi-dimensional discrete sequences, and the outputs are common real value vectors. The discrete values in input sequence are in turn weighted and mapped, and then these mapping results are weighted and mapped for the output of sequence neurons in hidden layer, the networks outputs are obtained. The learning algorithm is designed by employing the Levenberg-Marquardt algo-rithm. The simulation results show that, when the number of the input nodes is relatively close to the length of the sequence, the proposed model is obviously superior to the common artificial neural networks.
作者 肖红 李盼池
出处 《计算机工程与应用》 CSCD 2014年第16期62-66,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61170132) 黑龙江省教育厅基金(No.11551015 No.11551017 No.12511009 No.12511012)
关键词 神经网络 序列神经元 序列神经网络 算法设计 neural networks sequence neuron sequence neural networks algorithm design
  • 相关文献

参考文献15

  • 1Tsoi A C.Locally recurrent globally feed forward networks: a critical review of architectures[J].IEEE Transactions on Neural Networks, 1994,7(5) :229-239.
  • 2Wu X D, Wang Y N.Extended and Unscented Kalman filtering based feed-forward neural networks for time series prediction[J].Applied Mathematical Modelling,2012, 36:1123-1131.
  • 3Sven F C,Nikolaos K.Feature selection for time series prediction-A combined filter and wrapper approach for neural networks[J].Neurocomputing,2010,73: 1923-1936.
  • 4Zarita Z, Pauline O.Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data[J].Applied Soft Computing, 2011,11 : 4866-4874.
  • 5Garba I, Peng H, Wu J.Nonlinear time series modeling and prediction using functional weights wavelet neural net- work-based state-dependent AR model[J].Neurocomputing, 2012,86:59-74.
  • 6Durdu O F.A hybrid neural network and ARIMA model for water quality time series prediction[J].Engineering Applications of Artificial Intelligence, 2010,23 : 586-594.
  • 7Lee C M,Ko C N.Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm[J].Neurocomputing, 2009,73 : 449-460.
  • 8Hossein M.Long-term prediction of chaotic time series with multi-step prediction horizons by a neural network with Levenberg-Marquardt learning algorithm[J].Chaos, Solitons and Fractals,2009,41 : 1975-1979.
  • 9何新贵,梁久祯,许少华.过程神经网络的训练及其应用[J].中国工程科学,2001,3(4):31-35. 被引量:87
  • 10He X G,Liang J Z.Procedure Neural Networks[C]//Pro- ceedings of Conference on Intelligent Information Pro- ceeding.Beijing: Publishing House of Electronic Industry, 2000: 143-146.

二级参考文献10

  • 1刘晓鸿,戴汝为.线性阈值单元神经元网络的图灵等价性[J].计算机学报,1995,18(6):438-442. 被引量:5
  • 2W S McCulloch, W Pitts. A logical calculus of the ideas imminent in neuron activity. Bulletin Mathematical Biophysics, 1943, 5(1): 115-133.
  • 3T Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43( 1 ) : 59-69.
  • 4Zhang Li I,Nature,1998年,395卷,37页
  • 5Zhang L I,Nature,1998年,395卷,37页
  • 6Powell M J. The theory of radial basis functions for multivariate interpolation[R]. London:Cambridge University,1985
  • 7Broomhead D S, Lowe D. Multivariate functional interpolation and adaptive networks[J]. Complex Systems,1988,(2):321-355
  • 8McOulloch W S, Pitts W H. A Logical Calculus of the Ideas Immanent in Neuron Activity. Bulletin Mathematical Biophysics, 1943,5(1): 115- 133.
  • 9He Xingui, Liang Jiuzhen. Proc~,s Neural Networks. In: Shi Zhongzhi, Faitings B, Musen M, eds. In: Proc of the Conference on Intelligent Information Processing. Beijing: Science Press,2000, 143- 146.
  • 10何新贵,梁久祯.过程神经元网络的若干理论问题[J].中国工程科学,2000,2(12):40-44. 被引量:143

共引文献190

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部