期刊文献+

核磁共振图像脑组织自动提取方法 被引量:3

Automated MRI brain tissue extraction method
下载PDF
导出
摘要 核磁共振图像的脑组织提取是神经图像处理研究中的一个重要步骤。将传统的几何活动轮廓模型与二值水平集函数相结合,提出了一种新型的二值水平集活动轮廓模型,并基于该模型提出了一种能够自动、准确实现MRI脑组织提取的方法。该方法在脑组织内部自动设定最优初始轮廓曲线,将该演化曲线隐含地表示成一个高维函数的零水平集,零水平集在基于区域的图像力驱动下不断演化并达到待分割脑部图像的边缘。将基于该方法的脑组织提取结果与作为金标准的专家手动分割结果和其他流行算法相比较,结果表明提出的脑组织提取方法能够自动、准确和快速地提取MRI脑组织,是一种鲁棒性较好的MRI脑组织提取方法。 The segmentation of brain region from non-brain region in magnetic resonance images, also referred to brain tissue extraction, is an important and difficult task due to the convoluted brain surface and weak boundaries between brain and non-brain tissue. This paper proposes an accurate and automatic method of brain tissue extraction based on a novel binary level set active contour model. An initial contour, which is automatically set inside the brain, is driven by a region-based image force until it well fit the brain and non-brain boundaries. Quantitative evaluation of the new method is performed by comparing the result of the new method to those obtained using manual segmentation in 10 sets normal adult MR brain images. Experimental results demonstrate that the proposed method can provide accurate and automatic brain tissue extraction results.
出处 《计算机工程与应用》 CSCD 2014年第16期168-172,共5页 Computer Engineering and Applications
基金 北京市自然科学基金(No.4122018)
关键词 脑组织提取 灰度直方图 活动轮廓模型 水平集 质量评估 brain tissue extraction intensity histogram active contour model level set quality evaluation
  • 相关文献

参考文献15

  • 1Woods R P,Dapretto M,Sicotte N L,et al.Creation and use of a talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data[J].Human Brain Mapping, 1999,8:73-79.
  • 2Shattuck D W, Sandor-leahy S R, Schaper K A, et al.Mag- netic resonance image tissue classification using a partial volume model[J].Neurolmage,2001,13 : 856-876.
  • 3Strother S,La Conte S,Kai Hansen L, et al.Optimizing the fMRI dataprocessing pipeline using prediction and reproducibility performance metrics: I.A preliminary group analysis[J].Neurolmage, 2004,23 : 196-207.
  • 4Zhang Y Y, Brady M, Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J].IEEE Trans on Med Imaging,2001,20:45-57.
  • 5Marroquin J, Vemuri B.An accurate and efficient Bayesian method for automatic segmentation of brain MRI[J].IEEE Trans on Med Imaging, 2002,21 : 934-945.
  • 6Liu J X, Chen Y S, Chen L F.Accurate and robust extrac- tion of brain regions using a deformable model based on radial basis functions[J].Journal of Neuroscience Methods, 2009,183:255-266.
  • 7Boesen K, Rehm K, Schaper K, et al.Quantitative com- parison of four brain extraction algorithms[J].NeuroIm- age,2004,22(3) : 1255-1261.
  • 8Fennema-notestine C,Ozyurt I B,Clark C P,et al.Quan- titative evaluation of automated skull-stripping method applied to contemporary and legacy images, effects of diagnosis, bias correction, and slice location[J].Hum Brain Mapp,2006,27(2) :99-113.
  • 9Smith S M.Fast robust automated brain extraction[J]. Hum Brain Mapp, 2002, 17 : 143-155.
  • 10Zhuang A H,Valentino D J, Toga A W.Skull-stripping magnetic resonance brain images using a model-based level set[J].NeuroImage, 2006,32 : 79-92.

同被引文献32

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部