期刊文献+

融入情境强度的客户行为模式挖掘及变化侦测 被引量:1

Customer behavior pattern mining and change detection with context intensity constraints
下载PDF
导出
摘要 现有的客户行为分析往往忽略了客户群体的情境信息,使得行为模式及其变化分析存在局限性.文章首先定义了客户的情境、情境强度和行为变化,并对其进行了量化处理;其次,提出了融入情境强度约束的行为模式挖掘方法和模式变化侦测方法,并进一步提取了造成行为变化的关键情境.文中对情境强度的考虑,使得规则变化的敏感度加大,改进了海量数据稀疏下关联规则支持度、置信度和敏感度低的缺点.实验和分析证明了方法的可行性和有效性. Currently, many studies dedicated to context aware based recommendation, considered different types of context properties, but they ignore the important degree of different context attribute impact the behav- ior, that is, context strength. This paper defines the customer context, context intensity, and behavior chan- ging quantitatively; presents context strength constrained pattern mining methods and change detecting method to extract the critical situation caused by changes in behavior. The proposed algorithm increased the sensitivity of the interests changing, improvement of the massive data under support for sparse association rules, the shortcomings of low confidence sensitivity. Experiments and analysis demonstrated the feasibility and effective- ness.
出处 《管理科学学报》 CSSCI 北大核心 2014年第8期60-73,共14页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(71071141) 国家科技支撑计划子课题资助项目(2012BAI34B01-5) 浙江省自然科学基金资助项目(LY14F020002)
关键词 情境强度 客户行为 约束频繁模式 变化侦测 推荐策略 context intensity customer behavior constraint-based frequent patterns interests drift detecting recommended strategy
  • 相关文献

参考文献6

二级参考文献76

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2樊治平,孙永洪.知识共享研究综述[J].管理学报,2006,3(3):371-378. 被引量:120
  • 3中国互联网信息中心.第23次中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.net.cn.
  • 4徐小龙,王方华.虚拟社区的知识共享机制研究[J].自然辩证法研究,2007,23(8):83-86. 被引量:81
  • 5Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C].In:Proc.of 1th Int.Conf.on Management of Data,Washington DC,USA,1993,207-216.
  • 6Han Jia-wei,Pei Jian,Yin Yi-wen.Mining frequent patterns without candidate generation:a rrequent-pattern tree approach[J].Data Mining and Knowledge Discovery,2004,8(1):53-87.
  • 7Pei J,Han J,Mao R.CLOSET:an efficient algorithm for mining frequent closed itemsets[C].In:ACM-SIGMOD Workshop on Data Mining and Knowledge Discovery (DMKD′00),Dallas,TX,May 2000.
  • 8Wang Jian-yong,Han Jia-wei.TFP:an efficient algorithm for mining Top-K frequent closed itemsets[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(5):652-664.
  • 9Mohammed J.Zaki.Efficient algorithms for mining closed itemsets and their lattice structure[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(4):462-478.
  • 10Pei Jian,Wang Hai-xun,Liu Jian,et al.Discovering frequent closed partial orders from strings[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(11):1467-1481.

共引文献239

同被引文献33

  • 1王建民.转型时期中国社会的关系维持——从“熟人信任”到“制度信任”[J].甘肃社会科学,2005(6):165-168. 被引量:39
  • 2阎云翔.差序格局与中国文化的等级观[J].社会学研究,2006(4):201-213. 被引量:356
  • 3Dwyer F R, Schuur P H, Oh S. Developing buyer-seller relationships[ J]. Journal of Markting, 1987, 51 (2) : 11-27.
  • 4Trope Y, Liberman N, Wakslak C. Construal levels and psychological distance:effects on represetation, predic- tion, evaluation,and behavior [ J ]. Journal of Consumer Psychology, 2007, 17(2): 83-95.
  • 5Trope Y, Liberman N. Construal level theory of psycho- logical distance [ J ]. Psychology Review, 2010, 117 (2) : 440-463.
  • 6Fujita K, Henderson M D, Eng J, et al. Spatial distance and mental construal of social events [ J ]. Psychology Science, 2006, 17 (4) : 278-282.
  • 7Liberman N, Trope Y, Wakslak C. Construal level theory and consumer behavior[ J]. Journal of Consumer Psychology, 2007, 17(2): 113-117.
  • 8Trope Y, Liberman N. Temporal construal[ J]. Psycho- logical Review, 2003, 110(3): 403-421.
  • 9Bar-Anan Y, Liberman N, Trope Y. The association between psychological distance and construal level: evidence from an implicit association test[J]. Journal of Experimental Psychology-General, 2006, 135 ( 4 ) : 609- 622.
  • 10Zhao M, Xie J. Effects of social and temporal distance on consumers' responses to peer recommendations [ J ]. Journal of Marketing Research, 2011, 48 (3) : 486- 496.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部