期刊文献+

圈的无重复分数染色

Fractional Thue chromatic number of cycles
下载PDF
导出
摘要 考虑使得图G存在无重复的k-重n-染色的所有数对(n,k),其比值n/k的下确界定义为图G的无重复分数染色数.圈图的无重复分数染色数在文献中已有研究,除了C10,C14和C17之外的所有圈图的无重复分数染色数都已被确定,讨论并给出了这3个圈图的无重复分数染色数的上下界. The fractional Thue chromatic number of a graph G was defined as the infimum of nk such that there existed a k-tuple nonrepetitive n-colouring of G.The fractional Thue chromatic numbers of all cycles were determined .The exceptional cases were C10 , C14 , and C17 .Some upper and lower bounds for the fractional Thue chromatic number of these cycles were presented .
出处 《浙江师范大学学报(自然科学版)》 CAS 2014年第3期241-247,共7页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11171310) 浙江省自然科学基金资助项目(Z6110786)
关键词 无重复染色 多重染色 无重复分数染色数 nonrepetitive coloring multiple coloring fractional Thue chromatic number cycle
  • 相关文献

参考文献6

  • 1T hue A. Uber unendliche Zahlenreihen[ J]. Selected Mathematical Papers of Axel Thue, 1906(7) :139-158.
  • 2Alon N, Grytczuk J, Haluszczak M, et al. Nonrepetitive colorings of graphs[ J ]. Random Structures & Algorithms ,2002,21 (3/4) :336-346.
  • 3Bresar B, Grytczuk J, Klavzar S, et al. Nonrepetitive colorings of trees [ J ]. Discrete Mathematics,2007,307 ( 2 ) : 163-172.
  • 4Currie J D. There are ternary circular square-free words of length n for n ≥ 18 [ J ]. Electron J Combin,2002,9 ( 1 ) :N10.
  • 5KUndgen A, Pelsmajer M J. Nonrepetitive colorings of graphs of bounded tree-width [ J ]. Discrete Mathematics,2008,308 ( 19 ) :4473-4478.
  • 6Grytczuk J. Nonrepetitive colourings of graphs A survey[ J ]. International Journal of Mathematics and Mathematical Sciences,2007,2007 : 74639.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部