摘要
考虑使得图G存在无重复的k-重n-染色的所有数对(n,k),其比值n/k的下确界定义为图G的无重复分数染色数.圈图的无重复分数染色数在文献中已有研究,除了C10,C14和C17之外的所有圈图的无重复分数染色数都已被确定,讨论并给出了这3个圈图的无重复分数染色数的上下界.
The fractional Thue chromatic number of a graph G was defined as the infimum of nk such that there existed a k-tuple nonrepetitive n-colouring of G.The fractional Thue chromatic numbers of all cycles were determined .The exceptional cases were C10 , C14 , and C17 .Some upper and lower bounds for the fractional Thue chromatic number of these cycles were presented .
出处
《浙江师范大学学报(自然科学版)》
CAS
2014年第3期241-247,共7页
Journal of Zhejiang Normal University:Natural Sciences
基金
国家自然科学基金资助项目(11171310)
浙江省自然科学基金资助项目(Z6110786)
关键词
无重复染色
多重染色
无重复分数染色数
圈
nonrepetitive coloring
multiple coloring
fractional Thue chromatic number
cycle