摘要
We introduce the generalized area operators by using nonnegative measures defined on upper half-spaces R+^n+1. The characterization of the boundedness and compactness of the generalized area operator from LP(]Rn) to Lq(IRn) is investigated in terms of s-Carleson measures with 1 〈 p, q 〈 +∞. In the case of p = q = 1, the weak type estimate is also obtained.
We introduce the generalized area operators by using nonnegative measures defined on upper half-spaces R+^n+1. The characterization of the boundedness and compactness of the generalized area operator from LP(]Rn) to Lq(IRn) is investigated in terms of s-Carleson measures with 1 〈 p, q 〈 +∞. In the case of p = q = 1, the weak type estimate is also obtained.
基金
Acknowledgements The authors were partially supported by the National Natural Science Foundation of China (Grant No. 11271162), the Natural Science Foundation of Zhejiang Province (Y6110824), and the second author was also partially supported by the Natural Science Foundation of Zhejiang Province (Y6100810).