期刊文献+

Generalized area operators on L^p(R^n) 被引量:2

Generalized area operators on L^p(R^n)
原文传递
导出
摘要 We introduce the generalized area operators by using nonnegative measures defined on upper half-spaces R+^n+1. The characterization of the boundedness and compactness of the generalized area operator from LP(]Rn) to Lq(IRn) is investigated in terms of s-Carleson measures with 1 〈 p, q 〈 +∞. In the case of p = q = 1, the weak type estimate is also obtained. We introduce the generalized area operators by using nonnegative measures defined on upper half-spaces R+^n+1. The characterization of the boundedness and compactness of the generalized area operator from LP(]Rn) to Lq(IRn) is investigated in terms of s-Carleson measures with 1 〈 p, q 〈 +∞. In the case of p = q = 1, the weak type estimate is also obtained.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2014年第5期1051-1072,共22页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements The authors were partially supported by the National Natural Science Foundation of China (Grant No. 11271162), the Natural Science Foundation of Zhejiang Province (Y6110824), and the second author was also partially supported by the Natural Science Foundation of Zhejiang Province (Y6100810).
关键词 L^p(R^n) Space area operator s-Carleson measure L^p(R^n) Space, area operator, s-Carleson measure
  • 相关文献

参考文献2

二级参考文献25

  • 1WU Zhijian.Area operator on Bergman spaces[J].Science China Mathematics,2006,49(7):987-1008. 被引量:7
  • 2[1]Cohn W S.Generalized area operators on Hardy spaces.J Math Anal Appl,1997,216(1):112-121
  • 3[2]Duren P L.Extension of a theorem of Carleson.Bull Amer Math Soc,1969,75:143-146
  • 4[3]Carleson L.An interpolation problem for bounded analytic functions.Amer J Math,1958,80:921-930
  • 5[4]Garnett J B.Bounded Analytic Functions.New York/London:Academic Press,1982
  • 6[5]Luecking D.Trace ideal criteria for Toeplitz operators.J Funct Anal,1987,73(2):345-368
  • 7[6]Wu Z.Carleson measures and multipliers for Dirichlet spaces.J Funct Anal,1999,169(1):148-163
  • 8[7]Coifman R R,Rochberg R.Representation theorems for holomorphic and harmonic functions in Lp.Representation Theorems for Hardy spaces,Astrisque,77,Soc.Math.France,Paris,1980,11-66
  • 9[8]Rochberg R.Decomposition theorems for Bergman spaces and their applications.Operators and function theory.NATO Adv Sci Inst Ser C Math Phys Sci,1985,153:225-277
  • 10[9]Luecking D.Embedding theorems for spaces of analytic functions via Khinchine's inequality.Michigan Math,1993,40(2):333-358

共引文献7

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部