摘要
考虑耦合阻尼系统{x″+p1(t)x'+q1(t)x=f1(t,y)+e1(t),y″+p2(t)y'+q2(t)y=f2(t,x)+e2(t).周解期的存在性问题.其中pi,qi,ei∈L1(R)是T-周期函数,fi∈Car(R×R+,R)(i=1,2)在原点具有奇异性.运用Schauder不动点定理和fi的奇异性,证明该系统存在周期解.
This paper investigate the existence of periodic solntions for the damped coupled systems {x"+p1(t)x'+q1(t)x=f1(t,y)+e1(t),y"+ p2(t)y'+q2(t)y=f2(t,x)+e2(t) where pi,qi,ei∈L1(R) are T - periodic, fi∈Car(R×R+,R)(i=1,2) with the singularity at the origin. We will prove that the singularity of fi enables the existence of periodic solutions through a basic application of Schauder's fixed point theorem.
出处
《首都师范大学学报(自然科学版)》
2014年第4期6-10,共5页
Journal of Capital Normal University:Natural Science Edition