期刊文献+

基于核部分非负矩阵分解的亚像元级地物光谱分析 被引量:1

Spectral Analysis for Subpixel Materials Based on Kernel Partial Nonnegative Matrix Factorization
下载PDF
导出
摘要 为了进一步提高亚像元级地物的光谱分析精度,提出了一种基于核部分非负矩阵分解(Kernel Protection Non-negative Matrix Factorization,KPNMF)的非线性解混算法。首先通过基于凸面几何理论的端元提取方法提取纯像元端元候选像素集合,然后根据候选像素的空间纯度指数判断纯像元端元。在纯像元端元信息已知的条件下,利用核方法对部分非负矩阵分解(Protection Non-negative Matrix Factorization,PNMF)进行推广,构造相应的目标函数,推导迭代求解过程,分解求得亚像元端元光谱和所有端元的丰度。试验结果表明,提出的解混算法具有良好的非线性分解能力,解混结果优于线性解混算法。 To improve the accuracy of spectral analysis for subpixel materials further, a nonlinear unmixing algorithm based on the kernel partial nonnegative matrix factorization (KPNMF) was proposed. Firstly, an endmember extraction algorithm based on the theory of convex geometry was used to generate a candidate pixel set of pure endmembers, and then the pure endmernber was determined according to the spatial purity indices of the candidate pixels. Given information of pure endmembers, the kernel method was adopted to extend partial nonnegative matrix factorization (PNMF). The corresponding objective function was constructed, and the iterative solution was also derived to obtain the subpixel endmembers and abundances of all the endmembers. The experimental results demonstrate that the proposed unmixing algorithm has good nonlinear unmixing ability, and the unmixing results are better than those of linear unmixing algorithms.
出处 《中国空间科学技术》 EI CSCD 北大核心 2014年第4期46-52,65,共8页 Chinese Space Science and Technology
基金 国家自然科学基金(61171152) 浙江省自然科学基金(LY13F020044) 教育部支撑计划(625010216)资助项目
关键词 高光谱解混 亚像元 凸面几何 空间纯度指数 部分非负矩阵分解 航天遥感 Hyperspectral unmixing Subpixel Convex geometry Spatial purity index Partial nonnegative matrix factorization Space remote sensing
  • 相关文献

参考文献20

  • 1KEStlAVA N, MUSTARD J F. Spectral unmixing [J]. IEEE Signal Processing Magazine, 2002, 19(3): 44-57.
  • 2BOARDMAN J W, KRUSE F A, GREEN R O. Mapping target signatures via partial unmixing of AVIRIS data: in summaries[C]. Fifth JPL Airborne Earth Science Workshop, Pasadena, CA: JPI, 1995:23 -26.
  • 3WINTER M E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectraldata [C]. SPIE Imaging Spectrometry V. San Diego California, Washington: SPLE Publishing, 1999: 266-275.
  • 4NASCIMENTO J M P, DIAS J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 898.
  • 5TAO XUETAO, WANG BIN, ZHANG LIMING, et al. A new endmember extraction algorithm based on orthogonal bases of subspace formed by endmembers[C]. Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 2006-2009.
  • 6CHANG C I, WU C C, LIU W M, et al. A new growing method for simplex-based endmember extraction algorithm [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2804 -2819.
  • 7BERMAN M, KIIVERI H, LAGERSTROM R, et al. ICE: a statistical approach to identifying endmembers in hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2085-2095.
  • 8MIAO LIDAN, QI HAIRONG. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 765-777.
  • 9LI JUN, BIOUCAS J M D. Minimum volume simplex analysis: a fast algorithm to unmix hyperspectral data [C]// Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2008(3): Ⅲ-250-Ⅲ-253.
  • 10BIOUCAS J M D. A variable splitting augmented Lagrangian approach to linear spectral unmixing [C]// Proceedings of 1st IEEE WHISPER, Grenoble, Aug. 26-28, 2099: 1-4.

同被引文献8

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部