期刊文献+

基于模糊凸集的结构非概率可靠性综合模型 被引量:3

A non-probabilistic model of structural reliability based on fuzzy convex set model
原文传递
导出
摘要 在小样本或极小样本问题中,由于参数波动的确切范围难以确定,普通刚性凸集模型含有难以估量和控制的误差,其适用性受到限制.鉴于此,研究建立了一种新的不确定性模型——模糊凸集模型,并通过在刚性凸集中引入一个新的参数——模糊扩展参数,建立了几种典型的模糊凸集模型.在模糊凸集模型的基础上,建立了一种非概率可靠性的综合模型,采用Gauss-Legendre求积方法解决了指标求解所涉及的积分问题.算例表明,采用基于模糊凸集的非概率可靠性综合模型度量小样本结构的可靠性更加合理,可靠性指标的求解方法正确可行. In small sample size problems, it is difficult to judge and control the errors of the ordinary rigid convex model. In view of this, a new uncertainty model named fuzzy convex set model was built, whose properties were systematically researched. Some typical models were established by introducing a new parameter named fuzzy extending parameter into the ordinary convex models. A comprehensive and integral reliability model was presented on the basis of the new uncertainty model. The Gauss-Legendre integral formula was used for the reliability calculation. Two examples were given and showed the rationality and feasibility of the proposed uncertainty and reliability models.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2014年第9期935-943,共9页 Scientia Sinica Physica,Mechanica & Astronomica
基金 教育部新世纪优秀人才支持计划 海军工程大学自然科学基金(批准号:HGDQNJJ13013)资助项目
关键词 结构可靠性 非概率 模糊凸集模型 稳健可靠性 Gauss-Legendre求积公式 structural reliability, non-probabilistic, fuzzy convex set model, robust reliability, Gauss-Legendre integralformula
  • 相关文献

参考文献13

二级参考文献90

共引文献398

同被引文献34

  • 1李永华,黄洪钟,刘忠贺.结构稳健可靠性分析的凸集模型[J].应用基础与工程科学学报,2004,12(4):383-391. 被引量:20
  • 2易平.对区间不确定性问题的可靠性度量的探讨[J].计算力学学报,2006,23(2):152-156. 被引量:23
  • 3王晓军,邱志平,武哲.结构非概率集合可靠性模型[J].力学学报,2007,39(5):641-646. 被引量:68
  • 4庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2005.
  • 5Elishakoff I. Possible limitations of probabilistic methods in engineering[J]. Appl Mech Rev, 2000, 53(2): 19-36.
  • 6Ben-HaimY. Anon-probabilisticconcept ofreliability[J]. Structural Safety, 1994, 14(4): 227-245.
  • 7Muhanna R, Kreinovich V, Solin P. Interval finite element methods: new direetions[C]//Proceedings of the NSF Workshop on Reliable Engineering Computing. Georgia, USA: NSF, 2006.
  • 8Yang Zichun, Stm Wencai. A set-based method for structural eigenvalue analysis using Kriging model and PSO algorithm[J], Computer Modeling in Engineering & Sciences, 2013, 92(2): 193-212.
  • 9Moens D, Vandepitte D. Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis[J]. Arch Comput Meeh Engng, 2006, 13(3): 389-464.
  • 10Krige D G. A statistical approach to problems at the Witwatersrand[D]. Witwatersrand, 1951.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部