期刊文献+

基于统计复杂度的非对称双稳系统的动力学复杂性研究 被引量:3

Dynamical complexity in an asymmetric bistable system via statistical complexity measures
原文传递
导出
摘要 本文运用统计复杂度和标准Shannon熵研究了乘性色噪声和加性白噪声共同作用下非对称双稳系统的动力学复杂性.考虑到系统势函数的非对称性,借助于Bandt-Pompe算法分别计算了系统总的以及左、右势阱的统计复杂度和标准Shannon熵,并在此基础上详细讨论了势阱的非对称性、加性白噪声、乘性色噪声及周期信号等对系统动力学复杂性的影响.结果表明,当这些因素变化时,系统总的统计复杂度和标准Shannon熵与系统单个势阱中的统计复杂度和标准Shannon熵呈现出明显不同的趋势,反映了其动力学复杂性的不同. The dynamical complexity is quantified by the statistical complexity and the normalized Shannon entropy in an asymmetric bistable system subject to multiplicative colored and additive white noises. The total statistical complexity and the total normalized Shannon entropy of the system are calculated based on Bandt-Pompe methodology. Because of the asymmetry of the potential, the statistical complexity and the normalized Shannon entropy in two different potential wells of the system are also obtained, respectively. Then, the effects of potential asymmetry, additive white and multiplicative colored noises and periodic signal on the dynamical complexity of the system are discussed in detail. It can be seen from the results that the trends of the curves of the statistical complexity and the normalized Shannon entropy of the system are different from those of two potential wells of the system when changing the parameters of the system.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2014年第9期981-992,共12页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:11172233 11272258 11302171)
关键词 动力学复杂性 统计复杂度 标准Shannon熵 dynamical complexity, statistical complexity, normalized Shannon entropy
  • 相关文献

参考文献1

二级参考文献25

  • 1McNamara B and Wiesenfeld K 1989 Phys. Rev. A 39 4854.
  • 2Gammaitoni L, H~nggi P, Jung P and Machesoni F 1998 Rev. Mod. Phys. 70 223.
  • 3Jia Y, Yu S and Li J 2000 Phys. Rev. E 62 1869.
  • 4Luo X Q and Zhu S Q 2004 Chin. Phys. 13 1201.
  • 5Li J H 2002 Phys. Rev. E 66 031104.
  • 6Ning L J, Xu Wei and Yao M L 2008 Chin. Phys. B 17 0486.
  • 7Lindner B, Garcia-Ojalvo J, Neiman A and Schimansky- Geier L 2004 Phys. Rep. 392 321.
  • 8Volkov E I, Ullner E, Zaikin A A and Kurths J 2003 Phys. Rev. E 68 026214.
  • 9Volkov E I, Ullner E, Zaikin A A and Kurths J 2003 Phys. Rev. E 68 061112.
  • 10Neiman A and Schimansky-Gerier L 1995 Phys. Lett. A 197 375.

同被引文献16

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部