期刊文献+

Banach空间中分离平衡问题的Levitin-Polyak-α适定性 被引量:2

Levitin-Polyak-α Well-posedness of Split Equilibrium Problems in Banach Space
下载PDF
导出
摘要 首先在Banach空间中给出分离平衡问题的Levitin-Polyak-α适定性的定义.然后,研究分离平衡问题的Levitin-Polyak-α适定性的度量性质. In this paper, we generalize the concept of Levitin-Polyak-α well-posedness to a spilt equilibrium problems in Banach space. We also give some characterizations of Levitin-Polyak-α well-posedness for a spilt equilibrium problems.
作者 高友
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期455-459,共5页 Journal of Sichuan Normal University(Natural Science)
基金 四川省科技厅应用基础研究基金(2010JY0121)资助项目
关键词 分离平衡问题 Levitin-Polyak-α适定性 度量性质 spilt equilibrium problems Levitin-Polyak-α well-posedness metric characterization
  • 相关文献

参考文献22

  • 1Tykhonov A N. On the stability of the functional optimization problem[J].USSR3 Gomput Math Yhys, 1966,6 :03, - 634.
  • 2Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem[ J]. Soveit Math Dokl, 1996,7: 764 - 767.
  • 3Zolezzi T. Well - posedness criteria in optimization with application to the calculus of variations[ J]. Nonlinear Anal:TMA,1995, 25:437 -453.
  • 4Zolezzi T. Well - posedness of optimal control problems[ J]. Control and Cybernetics, 1994,23:289 - 301.
  • 5Zolezzi T. Extend well -posedness of optimization problems [ J ]. J Optim Theory Appl, 1996,91:257 -266.
  • 6Dontchev A L, Zolezzi T. Well- posedness of Optimization Problem [ M ]. Berlin:Springer- Verlag, 1993.
  • 7Fang Y P, Hu R. Parametric well -posedness for variational inequalities defined by bifunetions [ J]. Comput Math Appl, 2007,53 : 1306 - 1316.
  • 8夏福全,黎小波.Banach空间中分离变分不等式的Levitin-Polyak-α适定性(英文)[J].四川师范大学学报(自然科学版),2012,35(3):430-434. 被引量:4
  • 9朱莉,夏福全.广义向量混合变分不等式的Levitin-Polyak适定性[J].四川师范大学学报(自然科学版),2013,36(5):655-662. 被引量:3
  • 10Cavazzuti E, Morgan J. Well - posed Saddle Point Problems [ M ]. New York : Marcel Dekker, 1983.

二级参考文献34

  • 1Long X J, Huang N J, Teo K L. Levitin-Polyak well-posedness for equilibrium problems with functional constraints[J]. J Inequal Appl,2008,2008:657329.
  • 2Hu R, Fang Y P. Levitin-Polyak well-posedness of variational inequalities[J]. Nonlinear Anal:TMA,2010,72:373-381.
  • 3Kuratowski K. Topology:1 and 2[M]. New York:Academic Press,1968.
  • 4Tykhonov A N. On the stability of the functional optimization problem[J]. USSR J Comput Math Phys,1996,6:631-634.
  • 5Levitin E S, Polyak B T. Convergence of minimizing sequences in conditional extremum problem[J]. Soveit Math Dokl,1996,7:764-767.
  • 6Zolezzi T. Well-posedness criteria in optimization with application to the calculus of variations[J]. Nonlinear Anal:TMA,1995,25:437-453.
  • 7Zolezzi T. Well-posedness of optimal control problems[J]. Control and Cybernetics,1994,23:289-301.
  • 8Zolezzi T. Extend well-posedness of optimization problems[J]. J Optim Theo Appl,1996,91:257-266.
  • 9Bednarczuk E M. Well-posedness of optimization problem[C]//Krabs J J W. Recent Advances and Historical Development of Vector Optimization Problems. Lecture Notes in Economics and Mathematical Systems. 294. Berlin:Springer,1987:51-61.
  • 10Fang Y P, Hu R. Parametric well-posedness for variational inequalities defined by bifunctions[J]. Comput Math Appl,2007,53:1306-1316.

共引文献4

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部