期刊文献+

弱Gorenstein FP-内射模 被引量:5

Gorenstein FP-Injective Modules
下载PDF
导出
摘要 研究了弱Gorenstein FP-内射模,证明了凝聚环上弱Gorenstein FP-内射模是强Gorenstein FP-内射模的直和项,利用弱Gorenstein FP-内射模对FP-自内射环进行了刻画,讨论了凝聚环上FP-内射模类、Gorenstein FP-内射模类和弱Gorenstein FP-内射模类三者之间的联系. Weak Gorenstein FP-injective modules are investigated. It is proved that a weak Gorenstein FP-injective module is a di- rect summand of a strongly Gorenstein FP-injective module over coherent rings. Moreover, self-FP-injective rings are characterized in terms of weak Gorenstein FP-injective modules, and some connections among the classes of FP-injective modules, Gorenstein FP-injec- tive modules and weak Gorenstein FP-injective modules over coherent rings are discussed.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期477-481,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11261050)资助项目
关键词 弱Gorenstein FP-内射模 FP-内射模 凝聚环 weak Gorenstein FP-injective module FP-injective module coherent ring
  • 相关文献

参考文献18

  • 1Anderson F W, Fuller K R. Rings and Categories of Modules[ M ]. New York:Springer- Verlag, 1992.
  • 2Rotman J J. An Introduction to Homological Algebra[ M]. London :Academic Press, 1979.
  • 3Enoc.,EE Jen.,OMG.Gorenstein平坦模[J].南京大学学报(数学半年刊),1993,10(1):1-9. 被引量:5
  • 4Enochs E E, Jenda O M G. Gorenstein injective and projective modules [ J]. Math Zeit, 1995,220( 1 ) :611 -633.
  • 5Mao L X, Ding N Q. Gorenstein FP- injective and Gorenstein flat modules [J]. J Algebra Appl,2008 ,7 :491 -506.
  • 6Bennis D. Rings over which the class of Gorenstein flat modules is closed under extensions[ J]. Commun Algebra,2009,37:855 -868.
  • 7Yang X Y, Liu Z K. Gorenstein projective, injective and fiat modules[ J]. J Aust Math Soc,2009,87:395 -407.
  • 8Bennis D, Mahdou N. Global Gorenstein dimension[J]. Proc Am Math Soc,2010,138:461 -465.
  • 9Yang X Y, Liu Z K. Strongly Gorenstein projective, injective and flat modules [ J ]. J Algebra,2008,320 (7) :2659 -2674.
  • 10Bennis D, Mahdou N. Strongly Gorenstein projective, injective and fiat modules[ J]. J Pure Appl Algebra,2007,7:491 -506.

共引文献4

同被引文献44

  • 1余柏林,汪明义.Π-凝聚环的推广[J].四川师范大学学报(自然科学版),2005,28(3):278-281. 被引量:9
  • 2徐龙玉,汪明义.关于零化子凝聚环[J].四川师范大学学报(自然科学版),2006,29(2):161-165. 被引量:10
  • 3易忠. 关于quasi-投射模和quasi-内射模[J]. 广西师范大学学报:自然科学版,1985,3(1):18-26.
  • 4GUPTA R N. On f-injective modules and semihereditary rings [ J]. Proc Nat Inst Sei, 1969,35 (1) :323 -328.
  • 5JAIN S. Flat and FP- injectivity[ J]. Proc Am Math Soc,1973,41 (2) :437 -442.
  • 6MAO L X, DING N Q. FP - projective dimensions[ J]. Commun Algebra,2005,33:1153 - 1170.
  • 7STENSTROM B. Coherent rings and FP - injective modules [ J ]. J London Math Soc, 1972,2:372 - 383.
  • 8NG H K. Finitely presented dimension of communicative rings and modules[ J]. Pacific J Math, 1984,113 (2) :25 -40.
  • 9ENOCHS E. A note on absolutely pure modules[ J]. Canad Math Bull, 1976,19(3) :361 -362.
  • 10ROTMAN J J. An Introduction to Homological Algebra[ M]. New York:Academic Press,1979.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部