期刊文献+

一类利用从属关系定义的双单叶函数类 被引量:7

On a New Subclass of Bi-univalent Functions Defined by Subordinary
下载PDF
导出
摘要 利用从属关系定义了一类新的双单叶函数类BΣ(n,λ,φ),利用从属定理研究得到了它的系数|a2|和|a3|的上界,并讨论了一些应用广泛的函数类,推广了一些已有结论,在证明方法上有了较大的变化. In this paper, the authors introduced a new subclass ∑(n,λ,φ) of bi-univalent functions defined by subordinary. The purpose is to obtain the estimates on the coefficients bounds │a2│and│a2│ At the same time, some families with wide application are also discussed. The results generalize the recent works. There are a few changes in the method of proof.
作者 李小飞 秦川
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期511-514,共4页 Journal of Sichuan Normal University(Natural Science)
基金 湖北省"十二五"规划课题(2013B308) 湖北省教育厅科研基金(B2013281)资助项目
关键词 解析函数 双单叶函数 从属 Salagean微分 analytic functions bi-univalent subordinary Salagean derivative
  • 相关文献

参考文献18

  • 1Brannan D A, Taha T S. On some classes of bi -univalent functions [ J]. Mathematical Analysis and Its Applications, 1985,2:18 -21.
  • 2Taha T S. Topics in univalent function theory [ D ]. London:University of London, 1981.
  • 3Brannan D A, Clunie J, Kirwan W E. Coefficient estimates for a class of starlike functions[ J ]. Canad J Math, 1970,22:476 -485.
  • 4Lewin M. On a coefficient problem for bi -univalent functions[ J]. Proc Am Math Soc, 1967,18 (1):63 -68.
  • 5Brannan D A, Clunie J G. Aspects of contemporary complex analysis[ C ]//Pro Nato Advan Study Insti. Durham, 1979.
  • 6Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in Izl < 1 [J]. Arch Rational Mech Anal,1969,32(2) :100 -112.
  • 7Frasin B A, Aouf M K. New subclasses of bi- univalent functions[ J]. Appl Math Lett,2011,24:1569 -1573.
  • 8Xu Q H, Gui Y C, Srivastava H M. Coefficient estimates for a certain subclass of analytic and bi - univalent functions [ J ]. Appl Math Left ,2012,25 (6) :990 - 994.
  • 9熊良鹏,李小飞,刘晓丽.受限于从属族的bi-单叶函数的系数边界[J].河南师范大学学报(自然科学版),2013,41(3):15-18. 被引量:5
  • 10Srivastava H M, Mishra A K, Gochhayat P. Certain subclasses of analytic and bi - univalent functions [ J ]. Appl Math Lett, 2010,23 : 1188 - 1192.

二级参考文献24

  • 1赵桢.双解析函数与复调和函数以及它们的基本边值问题[J].北京师范大学学报(自然科学版),1995,31(2):175-179. 被引量:74
  • 2黄沙.Clifford分析中双正则函数的非线性边值问题[J].中国科学(A辑),1996,26(3):227-236. 被引量:27
  • 3Hayman W. K, The asympototic behaviour ofp-valent functions, Proc. London Math. Soc, 1947, 5: 257-284.
  • 4He K, On some problems of univalent functions, Wuhan: Wuhan University Press, 2001:64-70.
  • 5Deng Q, The estimate of the difference of the moduli of adjacent coefficients of univalent function, Journal of Jiangxi Normal University (Natural Sciences Edition), 2002, 26(2): 128-131.
  • 6Ye Z. Q, On the successive coefficients of close-to-convex functions, J. Math. Anal. Appl, 2003, 283: 689-695.
  • 7Pommerenke Ch, Univalent functions, Gottingen: Vandenhoeck &: Ruprecht, 1975.
  • 8Dong X. H, Yang M, Cauchy-stieltjes integrals and areally mean p-valent functions, Acta Mathematica Sinica,Chinese Series, 2005, 48(5): 851-858.
  • 9Dong X. H, The estimation of the minimum modulus and its applications for areally mean p-valent functions,Acta Mathematica Sinica, Chinese Series, 2005, 48(3): 465-478.
  • 10Srivastava H M, Mishra A K, Goehhayat P. Certain subclasses of analytic and bi-univalent functions[J]. Appl Math Lett,2010,23(10) : 1188-1192.

共引文献11

同被引文献32

  • 1邓琴.具有复阶的某类解析函数[J].杭州电子科技大学学报(自然科学版),2010,30(3):88-90. 被引量:1
  • 2杨定恭.关于具有负系数的p叶星象函数的注记[J].纯粹数学与应用数学,1993,9(1):119-122. 被引量:2
  • 3SILVERMAN H. Univalent functions with negative coefficients[ J]. Proc Am Math Soc, 1975,51:109- 116.
  • 4POMMERENKE C. Univalent Functions [ M ]. Gottengen : Vanderhoeck and Ruprecht, 1975.
  • 5YANG D G, LIU J L. A class of meromorphically multivalent functions defined by means of a linear operator [ J ]. Appl Math Comput,2008,204 : 862 - 871.
  • 6HE P, ZHANG D F. Certain subclasses of meromorphically multivalent functions associated with the linear operator [ J J. Appl Math Lett,2011,24 : 1817 - 1822.
  • 7XU Q H, SRIVASTAVA H M, LI Z. A certain subclass of analytic and close -to -convex functions[J]. Appl Math Lett,2011, 24 : 396 - 401.
  • 8. ROSIHAN M, LEE S K, RAVICHANDRAN V, et al. Coefficient estimates for bi - univalent Ma - Minda starlike and convex func- tions [ J ]. Appl Math Lett,2012,25:344 - 351.
  • 9GOODMAN A W. Univalent Functions[ M]. New Jersey:Polygonal Publishing House, 1983.
  • 10SRIVASTAVA H M, YANG D G, XU N E. Some subclasses of meromorphically multivalent functions associated with a linear op- erator [ J ]. Appl Math Comput,2008,195 ( 1 ) : 11 - 23.

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部