期刊文献+

一类周期系数力学系统分岔控制 被引量:1

Bifurcation Control of Mechanical System with Periodic Coefficients
下载PDF
导出
摘要 为了控制周期系数微分系统平衡点失稳后的分岔行为,基于Floquet-Lyapunov理论,将控制常系数系统分岔行为的方法(线性法、参数法、平移法)应用于一类具有周期系数的力学微分系统,设计了相应的控制器,研究了其控制平衡点分岔行为的有效性.研究结果表明:平移法不能有效控制周期系数微分系统的平衡点失稳后发生的Flip分岔和Hopf分岔行为.若平衡点失稳发生Flip分岔形成周期2点,可分别采用线性法和参数法将周期2点控制到周期1点;若平衡点失稳发生Hopf分岔形成Hopf圈,可分别采用线性法和参数法将Hopf圈控制到周期1点. In order to control the bifurcation behavior at the equilibrium point of the differential system with periodic coefficients losing its stability,the methods for bifurcation control for the dynamical system with constant coefficients, such as using the linear controller, parameter method, and translation,were applied to a mechanical system with periodic coefficients by the Floquet-Lyapunov theory. Then,the related controllers were designed,and its validity in controlling the bifurcation behavior at the equilibrium point was tested through numerical calculation. The results show that translation is invalid to control the Flip and Hopf bifurcations at the equilibrium point in mechanical system with periodic coefficients. When a 2-periodic point is generated by the period-doubling Flip bifurcation at the unstable equilibrium point,either of the linear controller and the parameter method can be used to control the 2-periodic point back to a 1-periodic point. When a Hopf circle is generated by Hopf bifurcation after the equilibrium point loses its stability,the linear controller and the parameter method are all effective for controlling the Hopf circle to a 1-periodic point.
出处 《西南交通大学学报》 EI CSCD 北大核心 2014年第4期741-745,共5页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(11172246) 中央高校基本科研业务费专项资金资助项目(SWJTU12cx046 SWJTU11zt15)
关键词 周期系数系统 分岔控制 Flip分岔 HOPF分岔 systems with periodic coefficients bifurcation control Flip bifurcation Hopf bifurcation
  • 相关文献

参考文献14

  • 1JUNE Y L, YAN J J. Control of impact oscillator[J]. Chaos, Solitons and Fractals, 2006, 28: 136-142.
  • 2HUBLER A, LUSCHER E. Resonant stimulation of complex systerms[J]. Helvetica Physica Acta, 1989, 62: 544-551.
  • 3胡岗,萧井华,郑志刚,等.混沌控制[M].上海:上海科技教育出版社,1999.
  • 4OTT E, GREBOGI C, YORK J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196- 1199.
  • 5唐驾时,欧阳克俭.logistic模型的倍周期分岔控制[J].物理学报,2006,55(9):4437-4441. 被引量:17
  • 6于津江,刘学军,韩万强,许海波.平移法控制离散系统的倍周期分岔和混沌[J].计算物理,2007,24(1):116-120. 被引量:1
  • 7罗晓曙,陈关荣,汪秉宏,方锦清,邹艳丽,全宏俊.状态反馈和参数调整控制离散非线性系统的倍周期分岔和混沌[J].物理学报,2003,52(4):790-794. 被引量:22
  • 8SINHA S C, PANDIYAN R. Analysis of quasilinear dynamical systems with periodic coefficients via Liapunov-Floquet transformation[J]. International Journal of Nonlinear Mechanics, 1994, 29(5): 687-702.
  • 9ALEXANDRA D,SINHA S C. Bifurcation control of nonlinear systems with time-periodic coefficients[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125: 541-548.
  • 10SINHA S C, REDKAR S, ERIC A B. Order reduction of nonlinear systems with time periodic coefficients using invariant manifolds[J]. Journal of Sound and Vibration, 2005, 284: 985-1002.

二级参考文献38

共引文献38

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部