期刊文献+

用快速多极方法预测圆柱绕流的气动噪声 被引量:1

Fast Multipole Method Applied in Prediction of Aeroacoustics Induced by a Circular Cylinder
下载PDF
导出
摘要 采用声模拟理论预测气动噪声时需要大量的计算时间,快速多极方法将传统点对点计算转变为点集之间的相互作用,可以有效加速计算。基于二维自由空间格林函数的分波展开方式,推导了FW-H方程应用快速多极变换后的积分核函数与计算公式。计算了低马赫数圆柱绕流的非定常流场;并由此预测了气动声源。随后,分别采用传统方法和快速多极方法计算其声场分布。结果表明,基于分波展开方式的快速多极方法能准确计算圆柱绕流气动噪声,在频率较低时能大幅减少声场计算时间,且观测点数越多,加速效果越明显。 Prediction of aeroacoustics using acoustic analogy is a time- consuming process,while the fast multipole method which changes traditional way of node- to- node computing into set- to- set interaction can accelerate the process effectively.In this paper,the FW-H equation and its integral kernel function are derived with the fast multipole method based on the partial-wave expansion formulation of free-space Green's function.The unsteady flow field with low Mach's number near a two-dimensional circular cylinder is computed and exported as the sound source,and the sound field is obtained via traditional method and the fast multipole method.The results show that the fast multipole method based on partial-wave expansion can calculate the aerodynamic noise accurately,and reduce the computing time greatly for relatively low frequencies.And the acceleration effect is more obvious with larger number of observers.
出处 《噪声与振动控制》 CSCD 2014年第4期123-127,133,共6页 Noise and Vibration Control
基金 国家自然科学基金(基金编号:11002116)
关键词 声学 气动噪声 数值预测 快速多极 声模拟 acoustics aerodynamic noise numerical prediction fast multipole method acoustic analogy
  • 相关文献

参考文献12

  • 1Lighthill M J. On sound generated aeroynamically. I. general theory[J]. Ptoceedinp of the Royal Society of Series A, 1952, A211: 564-587.
  • 2Lighthill M J. On sound generated aerodynamically. II. Turbulence as a source of sound[J]. Proeoodings of tho Royal Society of London, Series A, 1954, 222: 1-32.
  • 3Curie N. The influence of solid boundaries on aerodynamic sound[J]. Proceeedings of the Royal Society of London, SerivsA, 1952, 213, 1187: 505-514.
  • 4Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Phyaiea. 1987,73: 325-348.
  • 5Rokhlin V. Rapid solution of integral equations of scattering theory in two dimensions[J]. Jouenal of Computational Physics, 1990, 86: 414-439.
  • 6崔晓兵,季振林,武耀.快速多极子边界元法预测船舶舱室噪声[J].噪声与振动控制,2012,32(6):179-183. 被引量:3
  • 7Wolf W R, Lele S K. Acoustic analogy formulations accelerated by fast multipole method for two-dimensional aeroacoustic problems[J]. AIAA Journal, 2010, 48( 10): 2274-2285.
  • 8Wolf W R, Lele S K. Aeroacoustic integrals accelerated by fast multipole method[J]. AIAA Journal, 2011, 49(7): 1466-1477.
  • 9Wolf W R, Lele S K, Jothiprasad G, Cheung L. Investigation of noise generated by a DU 96 airfoil[C]. 18 th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, 2012, 2012-2055.
  • 10Abramowita M, Stegun I A. Handbook of mathematical function[M]. New York: Dover, 1965.

二级参考文献12

  • 1童宗鹏,王国治,张志谊,华宏星.水下航行器声振特性的统计能量法研究[J].噪声与振动控制,2005,25(1):29-32. 被引量:10
  • 2Sakuma T., Yasuda Y., Fast multipole boundary element method for large-scale steady-state sound field analysis. Part I: setup and validation [J]. Acta Acustica united with Acustica, 2002, 88(4): 513-525.
  • 3Shen L., Liu Y. J., An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation [J]. Computational Mechanics, 2007, 40(3): 461-472.
  • 4Chen Z. S., Waubke H., Kreuzer W., A formulation of the fast multipole boundary element method (FMBEM) for acoustic radiation and scattering from three- dimensional structures [J]. Journal of Computational Acoustics, 2008, 16: 303-320.
  • 5Gumerov N. A., Duraiswami R., A broadband fast multipole accelerated boundary element method for the 3D Helmholtz equation [J]. Journal of the Acoustical Society of America, 2009, 125(1): 191-205.
  • 6Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables [M]. Dover publications, 1964.
  • 7Rokhlin V., Diagonal forms of translation operators for the Helmholtz equation in three dimensions[J]. Applied and Computational Harmonic Analysis, 1998, 5: 36-67.
  • 8Gumerov N. A., Duraiswami R., Fast multipole methods for the Helmholtz equation in three dimensions[M], Elsevier, 2004.
  • 9Fischer M., Gauger U., Gaul L., A multipole Galerkin boundary element method for acoustics [J]. Engineering Analysis with Boundary Elements, 2004, 28(2): 155-162.
  • 10Carrier J., Greengard L., Rokhlin V., A fast adaptive multipole algorithm for particle simulations [J]. SIAM Journal on Scientific and Statistical Computing, 1988, 9 (4): 669-686.

共引文献2

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部