期刊文献+

压缩感知下的稀疏表示语声恢复模型与算法 被引量:5

Speech Recovery Model and Algorithm over Sparse Representation based on Compressive Sensing
下载PDF
导出
摘要 本文讨论的语声信息恢复旨在提高带噪语声的可懂度。通过类比听觉掩蔽与视觉闭塞,在基于稀疏表示的图像去噪思想启发下,本文提出了基于压缩感知理论的稀疏表示语声恢复模型、数学表达式以及算法。与传统的语声增强算法不同,本文模型与算法的特点在于具备有效消除全局噪声干扰和恢复局部被噪声掩蔽的语声成分的双重能力,有效提高了处理后语声的可懂度。仿真实验和客观语声质量测度验证了提出的模型与算法的可行性、有效性以及优越性。 The speech recovery discussed by this paper aims at improving the intelligibility of noisy speech.By comparing of auditory masking and vision occlusion and inspired by image denoising idea base on sparse representation,this paper proposes a speech recovery model over sparse representation based on compressive sensing theory,its mathematical expression and the algorithm.Different from traditional speech enhancement algorithms,the superiority of this model and algorithm lies in its twofold ability of effectively eliminating global noise interference and recovering local incomplete speech components masked by noise interference,which improves the intelligibility of processed speech.Simulation experiments and objective speech quality measures verify that the proposed model and algorithm are feasible,effective and superior.
作者 李洋 李双田
出处 《信号处理》 CSCD 北大核心 2014年第8期914-923,共10页 Journal of Signal Processing
关键词 语声恢复 压缩感知 稀疏表示 speech recovery compressive sensing sparse representation
  • 相关文献

参考文献22

  • 1Loizou P C. Speech enhancement: theory and practice [ M]. CRC press, 2013.
  • 2Boll S. Suppression of acoustic noise in speech using spec- tral subtraction [ J ]. Acoustics, Speech and Signal Pro- cessing, IEEE Transactions on, 1979, 27(2) : 113-120.
  • 3Ephraim Y, Malah D. Speech enhancement using a mini- mum-mean square error short-time spectral amplitude es- timator [ J ]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1984, 32(6) : 1109-1121.
  • 4Hu Y, Loizou P C. A generalized subspace approach for enhancing speech corrupted by colored noise[ J]. Speech and Audio Processing, IEEE Transactions on, 2003, 11 (4) : 334-341.
  • 5Wang D L. On ideal binary mask as the computational goal of auditory scene analysis [ J ]. Speech Separation by Humans and Machines, 2005, 60: 63-64.
  • 6Bertalmio M, Sapiro G, Caselles V, et al. Image inpaint- ing[ C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co. , 2000: 417-424.
  • 7Elad M, Figueiredo M A T, Ma Y. On the role of sparse and redundant representations in image processing [ J ]. Proceedings of the IEEE, 2010, 98(6): 972-982.
  • 8Donoho D L. Compressed sensing[J]. Information Theo- ry, IEEE Transactions on, 2006, 52(4) : 1289-1306.
  • 9Adler A, Emiya V, Jafari M G, et al. Audio inpainting [J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2012, 20(3): 922-932.
  • 10Guichaoua C. Dictionary Learning for Audio Inpainting [J]. 2012.

二级参考文献22

  • 1Boll S.Suppression of acoustic noise in speech using spectral subtraction[J].Acoustics,Speech and Signal Processing,IEEE Transactions on,1979,27 (2):113-120.
  • 2Ephraim Y,Malah D.Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator[J].Acoustics,Speech and Signal Processing,IEEE Transactions on,1984,32(6):1109-1121.
  • 3Ephraim Y,Van Trees H L.A signal subspace approach for speech enhancement[J].Speech and Audio Processing,IEEE Transactions on,1995,3(4):251-266.
  • 4Donoho D L.Compressed sensing[J].Information Theory,IEEE Transactions on,2006,52(4):1289-1306.
  • 5Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].Information Theory,IEEE Transactions on,2006,52 (2):489-509.
  • 6Candès E J,Wakin M B.An introduction to compressive sampling[J].Signal Processing Magazine,IEEE,2008,25(2):21-30.
  • 7Christensen M G,Ostergaard J,Jensen S H.On compressed sensing and its application to speech and audio signals[C].Signals,Systems and Computers,2009 Conference Record of the Forty-Third Asilomar Conference on.IEEE,2009:356-360.
  • 8Adler A,Emiya V,Jafari M G,Elad M,Gribonval R,Plumbley M D.A constrained matching pursuit approach to audio declipping[C].Acoustics,Speech and Signal Processing (ICASSP),2011 IEEE International Conference on.IEEE,2011:329-332.
  • 9Gemmeke J F,Van Hamme H,Cranen B,Boves L.Compressive sensing for missing data imputation in noise robust speech recognition[J].Selected Topics in Signal Processing,IEEE Journal of,2010,4(2):272-287.
  • 10Pati Y C,Rezaiifar R,Krishnaprasad P S.Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition[C].Signals,Systems and Computers,1993.1993 Conference Record of The TwentySeventh Asilomar Conference on.IEEE,1993:40-44.

共引文献1

同被引文献43

  • 1黄河,戴硕,罗海,周荷琴.一种基于声信号的车辆碰撞检测装置[J].电子技术(上海),2010(8):65-67. 被引量:2
  • 2Lin J, Qu L. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis [ J ]. Journal of Sound and Vibration, 2000, 234( 1 ) :135 -148.
  • 3Wang S B, Huang W G, Zhu Z K. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis [ J ]. Mechanical Systems and Signal Processing,2011,25 (4) : 1299 - 1320.
  • 4Kankar P K, Sharma S C, Harsha S P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform [ J ]. Neurocomputing, 2013, 110 : 9 - 17.
  • 5Cheng J S, Yu D J, Tang J S, et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis [ J ]. Mechanism and Machine Theory, 2008, 43:712 -723.
  • 6Li Y J, Tsea P W, Yang X. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engineer [ J]. Mechanical Systems and Signal Processing, 2010, 24:193-210.
  • 7Peng F Q, Yu D J, Luo J S. Sparse signal decomposition method based on multi-scale ehirplet and its application to the fault diagnosis of gearboxes [ J ]. Mechanical Systems and Signal Processing,2011,25:549 - 557.
  • 8Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[ J ]. IEEE Transactions on Signal Processing, 1993, 41 (12) : 3397 -3415.
  • 9Wang Xin-qing, Zhu Hui-jie, Wang Dang. The diagnosis of rolling bearing based on the parameters of pulse atoms and degree of cyclostationarity [ J ]. Journal of Vibroengineering, 2013, 15(3) :1560 - 1575.
  • 10Engan K, Aase S O, Husoy J H. Method of optimal directions for frame design [ J ]. Proceedings ICASSP' 99 - IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999,5:2443 - 2446.

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部