期刊文献+

边缘化迭代容积卡尔曼滤波的单站无源定位算法 被引量:1

Single Observer Passive Location Algorithm Based on Marginalized Iterated Cubature Kalman Filter
下载PDF
导出
摘要 针对单站无源定位可观测性弱、观测噪声大而导致的定位精度低、收敛速度慢等问题,提出了一种边缘化迭代容积卡尔曼滤波算法。该算法采用基于似然增加的迭代策略,不需要设置判决门限,且保证了算法的全局收敛性。同时,其充分考虑状态向量与观测噪声之间的互协方差,将状态向量扩维,构造条件线性模型并进行边缘化滤波,不仅提高了算法的定位精度以及收敛速度,还减少了扩维后所需的采样点,提高了算法的运算效率。仿真结果表明,新算法改善了单站无源定位的定位精度以及收敛速度。 Because of the low observability and the high noise in single observer passive location,the performance of the positioning accuracy and convergence velocity was poor.A novel marginalized iterated cubature kalman filter was presented.The iteration strategy based on the likelihood increase was adopted.The global convergence of the algorithm was ensured,without the difficult choice of the judgment threshold.Meanwhile,the cross-covariance between the state and the measurement noise was taken into account.Then the state vector was augmented by the measurement noise.Based on the conditionally linear model,the marginalized filtering was proceeded.The positioning accuracy and the convergence velocity was improved.And the computational burden was reduced,because the less sigma points were needed in spite of the augmented state vector.Simulation results indicate that the novel algorithm improved the performance of the positioning accuracy and convergence velocity in single observer passive location.
机构地区 电子工程学院
出处 《信号处理》 CSCD 北大核心 2014年第8期924-929,共6页 Journal of Signal Processing
关键词 单站无源定位 边缘化 迭代容积卡尔曼滤波 似然增加 扩维 条件线性模型 single observer passive location marginalized iterated cubature kalman filter likelihood increase augmen-ted conditionally linear model
  • 相关文献

参考文献8

  • 1Arasaratnam I, Haykin S. Cubature kalman filters [ J ]. IEEE Transactions on Automatic Control, 2009, 54 (6) : 1254-1269.
  • 2穆静,蔡远利.迭代容积卡尔曼滤波算法及其应用[J].系统工程与电子技术,2011,33(7):1454-1457. 被引量:43
  • 3穆静,蔡远利,王长元.基于L-M方法的迭代容积卡尔曼滤波算法及其应用[J].西安工业大学学报,2013,33(1):1-6. 被引量:5
  • 4Wei Xiqing, Song Shenmin, Zhang Baoqun. Improved cubature kalman filter and its application [ C]// Proceed- ings of the 31st Chinese Control Conference, 2012, 33 (7) : 1794-1798.
  • 5Mu Jing, Cai Yuanli. Iterated cubature kalman filter and its application [ C ] // Proceedings of IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, 2011:33-37.
  • 6Morelande M R, Moran B. An unscented transformation for conditionally linear models[ C ] //Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2007 : 1417-1420.
  • 7Chang L, Hu B, Chang G, Li A. Marginalized iterated unscented kalman filter[ J]. IET Control Theory & Appli- cations, 2012, 6(6):847-854.
  • 8Zhan R H, Wang J W. Iterated unscented kalman filter for passive target tracking [ J ]. IEEE Transactions on Aero- space and Electronic Systems, 2007, 43 ( 3 ) : 1155-1163.

二级参考文献28

  • 1Arulampalam S, Askell S, Gordom N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].IEEE Trans. on Signal Processing,2002,50(2) :174 - 188.
  • 2Fu X Y, Jia Y M. An Improvement on resampling algorithm of particle filters[J~. IEEE Trans. on Signal Processing, 2010, 58(10) :5414 - 5420.
  • 3Kabaoglu N. Target tracking using particle filters with support vector regression[J]. IEEE Trans. on Vehicular Technology, 2009,58(5) :2569- 2573.
  • 4Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans. on Automatic Control, 2000,45(5) : 910 - 927.
  • 5Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss Hermite quadrature[J]. Pro ceeding of the IEEE,2007,95(5) :953 - 977.
  • 6Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control, 2009,54(6) : 1254 - 1269.
  • 7Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations[J]. IEEE Trans. on Signal Processing ,2010,58(10) :4977 - 4993.
  • 8Li X R, Jilkov V P. A survey of maneuvering target tracking part Ⅱ ballistic target models[C]// Proc. of Signal and Data Processing of Small Targets, 2001 : 559 - 581.
  • 9Frina A, Ristic B, Benvenuti D. Tracking a ballistic target: comparison of several nonlinear filters[J]. IEEE Trans. on Aerospace and Electronic Systems, 2002,38 (3) : 854 - 867.
  • 10Ristic B, Farina A, Benvenuti D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceeding of Radar Sonar and Navigation ,2003,150(2) :65 - 70.

共引文献46

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部