期刊文献+

样本扩充的稀疏表示单样本人脸识别 被引量:2

Sample Augment for SRC Single Sample Face Recognition
下载PDF
导出
摘要 人脸识别中,表情、光照与遮挡变化引起的同类间的类内差异特征可在不同类间共享,为此,从已知样本数充足的样本库中可提取类内差异特征,从而达到扩充单样本训练库的目的。欠样本条件下扩展的稀疏表示人脸识别算法(Extended SRC,ESRC)利用类内图像相减,得到一个扩充的训练样本库,在一定程度上提高了单样本人脸识别率。但是,其扩充样本库的方法过于简单,样本库包含的特征信息有限。针对这点,本文引入联合稀疏模型(Jointly Sparse Model,JSM)提取类内差异特征,该模型将一连串相关联的信号表示成共同特征与差异特征之和,用该模型对样本数充足的人脸图像进行特征提取,把得到的类内差异特征与单样本一起作为稀疏表示识别算法的训练样本。基于AR人脸数据库的实验结果表明,该算法取得了较高的识别率,为单样本人脸识别问题提供了一个有效的解决途径。 In the field of face recognition,intra-class difference features caused by expression,illumination and occlusion was sharable among other classes.Thus we could get intra-class difference features from face database where each kind of image is sufficient.By simple image subtracting,ESRC got an extra database to handle the single sample face recognition problem and got a good recognition rate.However,the intra-class difference features obtained by this method didn’t include all the difference between testing and training samples.To address this issue,we used JSMto obtain the intra-class difference information.A series of related signal could be represented as a combination of common features and discriminative features by JSM.Therefore,we could get discriminative features,namely intra-class difference features from sufficient samples.Finally training samples in SRC consisted of the single sample and the intra-class difference features as well.This algorithm gets a better result on AR face database and provides an effective solution for single sample face recognition problem.
出处 《信号处理》 CSCD 北大核心 2014年第7期856-860,共5页 Journal of Signal Processing
基金 国家自然科学基金项目(61072127 61372193 61070167) 广东省自然科学基金项目(S2013010013311 10152902001000002 S2011010001085 S2011040004211) 广东省高等学校高层次人才项目(粤教师函[2010]79号)
关键词 联合稀疏模型 样本扩充 稀疏表示分类 人脸识别 jointly sparse model sample augment sparse recognition classification face recognition
  • 相关文献

参考文献10

  • 1Tan X, Chen S, Zhou Z H, Zhang F. Face Recognition from a Single Image per Person: A Survey [ J ]. Pattern Recognition, 2006, 39(9): 1725-1745.
  • 2Wright J, Yang A, Ganesh A, Sastry S, Ma Y. Robust Face Recognition via Sparse Representation [ J ]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2009, 31(2) : 210-227.
  • 3畅雪萍,郑忠龙,谢陈毛.基于稀疏表征的单样本人脸识别[J].计算机工程,2010,36(21):175-177. 被引量:7
  • 4Deng W, Hu J, Guo J. Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary [ J].IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2012, 34(9) : 1864-1870.
  • 5Duarte M F, Sarvotham S, Baron D, Wakin M B, Bara- niuk R G. Distributed Compressed Sensing of Jointly Sparse Signals[ J ]. Proc Asiiomzr Conf. Signals, Systems and Computers, 2005: 1537-1541.
  • 6Nagesh P, Li B X. A Compressive Sensing Approach for Expression-Invariant Face Recognition [ C ]. IEEE CVPR, June, 2009: 1518-1525.
  • 7Yang A, Ganesh A, Sastry S, Ma Y. Fast ll-Minimiza- tion Algorithms and an Aplication in Robust Face Recog- nition: A Review [ R]. Technical Report UCB/EECS, 2010, 13 : 1849-1852.
  • 8Martinez A M, Benavente R. The AR Face Database[ R]. CVC Technical Report 24, June 1998.
  • 9Wang J, Plataniotis K, Lu J, Venetsanopoulos A. On Sol- ving the face Recognition Problem with one Training Sam- pie per Subject [ J ]. Pattern Recognition, 2006, 39 : 1746- 1762.
  • 10胡正平,李静,白洋.基于样本-扩展差分模板的联合双稀疏表示人脸识别[J].信号处理,2012,28(12):1663-1669. 被引量:4

二级参考文献21

  • 1Wang Jie,Plataniotis K N,Lu Juwei,et al.On Solving the Face Recognition Problem with One Training Sample per Subject[J].Pattern Recognition.2006,39(9):1746-1762.
  • 2Tan Xiaoyang,Chen Songcan,Zhou Zhihua,et al.Face Recognition from a Single Image per Person: A Survey[J].Pattern Recognition.2006,39(9):1725-1745.
  • 3Wright J,Ma Yi,Mairal J,et al.Sparse Representation for Computer Vision and Pattern Recognition[J].Proceedings of the IEEE.2010,98(6):1031-1044.
  • 4Candès E J,Tao T.Reflections on Compressed Sensing[J].IEEE Information Theory Society Newslette,2008,58(4): 20-23.
  • 5Donoho D L.Compressed Sensing[J].IEEE Transactions on Information Theory.2006,52(4):1289-1306.
  • 6Liu Jun,Chen Songcan,Zhou Zhihua,et al.Single Image Subspace for Face Recognition[C]//Proc.of the 3rd International Conference on Analysis and Modeling of Faces and Gestures.Rio de Janeiro,Brazil: Springer-Verlag,2007: 205-219.
  • 7Wright J,Yang A Y,Ganesh A,et al.Robust Face Recognition via Sparse Representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2009,31(2):210-227.
  • 8Wright J’ Yang A Y,Ganesh A, Ma Yi. Robust face rec-ognition via sparse representation [ J ]. IEEE Transactionson Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 9He Ran, Hu Baogang, Zheng Weishi, et al. Two-stagesparse representation for robust recognition on large-scaledatabase [ C ]. Proceedings of the National Conference onArtificial Intelligence, 2010: 475-480.
  • 10Huang Jiabin, Yang Ming-Hsuan. Fast sparse representa-tion with prototypes [ C ]. Proceeding of the IEEE Com-puter Society Conference on Computer Vision and PatternRecognition, 2010: 3618-3625.

共引文献9

同被引文献38

  • 1Patel V M, Wu T, Biswas S. Dictionary-based face rec- ognition under variable lighting and pose [J ]. IEEE Transactions on Information Forensics and Security, 2012, 7 ( 3 ) : 954-965.
  • 2Tan X, Chen S, Zhou Z H, et al. Recognizing partially occluded expression variant faces from single training im- age per person with SOM and soft k-NN ensemble [ J ]. IEEE Transactions on Neural Networks, 2005, 16 (4) : 875- 886.
  • 3Raudys S J, Jain A K. Small sample size effects in statis- tical pattern recognition: Recommendations for practition- ers[ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1991, 13 (3) : 252-264.
  • 4Chen S, Liu J, Zhou Z H. Making FLDA applicable to face recognition with one sample per person [ J ]. Pattern Recognition, 2004, 37 (7) : 1553-1555.
  • 5Wright J, Yang A Y, Ganesh A, et al. Robust face rec- ognition via sparse representation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (2) : 210-227.
  • 6Gao S, Tsang I W H, Chia L T. Kernel sparse represen- tation for image classification and face recognition [ C ]// Computer Vision-ECCV, 2010 : 1-14.
  • 7Yang M, Zhang L. Gabor feature based sparse represen- tation for face recognition with gabor occlusion dictionary. [ M ]. Computer Vision-ECCV, Springer Berlin Heidel- berg, 2010: 448-461.
  • 8Huang M W, Wang Z, Ying Z L. A new method for fa- cial expression recognition based on sparse representation plus LBP [ C ]//IEEE International Congress on Image and Signal Processing, 2010, 4: 1750-1754.
  • 9Mei X, Ling H. Robust visual tracking and vehicle classi- fication via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 ( 11 ) : 2259-2272.
  • 10Zafeiriou S, Petrou M. Sparse representations for facial ex- pressions recognition via ll optimization [ C ]//Computer Vision and Pattern Recognition Workshops, 2010: 32-39.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部